Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Enhanced Perturb and Observe Control Algorithm for a Standalone Domestic Renewable Energy System

    N. Kanagaraj1,*, Obaid Aldosari1, M. Ramasamy2, M. Vijayakumar2

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 2291-2306, 2023, DOI:10.32604/iasc.2023.039101 - 21 June 2023

    Abstract The generation of electricity, considering environmental and economic factors is one of the most important challenges of recent years. In this article, a thermoelectric generator (TEG) is proposed to use the thermal energy of an electric water heater (EWH) to generate electricity independently. To improve the energy conversion efficiency of the TEG, a fuzzy logic controller (FLC)-based perturb & observe (P&O) type maximum power point tracking (MPPT) control algorithm is used in this study. An EWH is one of the major electricity consuming household appliances which causes a higher electricity price for consumers. Also, a… More >

  • Open Access

    ARTICLE

    Influence of Urea Uneven Injection on the Performances of a Diesel Engine

    Chang Huang, Shuzhan Bai, Guoxiang Li*, Ke Sun*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.1, pp. 83-93, 2023, DOI:10.32604/fdmp.2022.021662 - 02 August 2022

    Abstract The influence of heterogeneous flow injection of urea at different velocities and temperatures on NOx conversion efficiency, ammonia storage and ammonia leakage is investigated experimentally. A diesel engine employing a selective catalytic reduction (SCR) technology is considered. It is found that for a fixed injection velocity, the degree of ammonia leakage changes depending on the temperature. The higher the temperature, the faster the catalytic reduction reaction and the smaller the degree of ammonia leakage. The temperature has a great influence on the catalytic reduction reaction rate. At an injection velocity of 10000/h, the average reaction More >

  • Open Access

    ARTICLE

    Design of a Five-Band Dual-Port Rectenna for RF Energy Harvesting

    Surajo Muhammad1,*, Jun Jiat Tiang1, Sew Kin Wong1, Jamel Nebhen2, Amjad Iqbal1

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 487-501, 2021, DOI:10.32604/cmc.2021.018292 - 04 June 2021

    Abstract This paper proposed the design of a dual-port rectifier with multi-frequency operations. The RF rectifier is achieved using a combination of L-section inductive impedance matching network (IMN) at Port-1 with a multiple stubs impedance transformer at Port-2. The fabricated prototype can harvest RF signal from GSM/900, GSM/1800, UMTS/2100, Wi-Fi/2.45 and LTE/2600 frequency bands at (0.94, 1.80, 2.10, 2.46, and 2.63 GHz), respectively. The rectifier occupies a small portion of a PCB board at 0.20 λg × 0.15 λg. The proposed circuit realized a measured peak RF-to-dc (radio frequency direct current) power conversion efficiency (PCE) of… More >

  • Open Access

    ARTICLE

    A Compact Dual-Port Multi-Band Rectifier Circuit for RF Energy Harvesting

    Surajo Muhammad1,*, Jun Jiat Tiang1, Sew Kin Wong1, Amjad Iqbal1, Amor Smida2, Mohamed Karim Azizi3

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 167-184, 2021, DOI:10.32604/cmc.2021.016133 - 22 March 2021

    Abstract This paper presents a compact multi-band rectifier with an improved impedance matching bandwidth. It uses a combination of п–matching network (MN) at Port-1, with a parallel connection of three cell branch MN at Port-2. The proposed impedance matching network (IMN) is adopted to reduce circuit complexity, to improve circuit performance, and power conversion efficiency (PCE) of the rectifier at low input power. The fabricated rectifier prototype operates at 0.92, 1.82, 2.1, 2.46 and 2.65 GHz covering GSM/900, GSM/1800, UMTS2100, and Wi-Fi/2.45–LTE2600. The size of the compact rectifier on the PCB board is 0.13λg × 0.1λg. The… More >

Displaying 1-10 on page 1 of 4. Per Page