Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (144)
  • Open Access

    ARTICLE

    Heuristic-Based Optimal Load Frequency Control with Offsite Backup Controllers in Interconnected Microgrids

    Aijia Ding, Tingzhang Liu*

    Energy Engineering, Vol.121, No.12, pp. 3735-3759, 2024, DOI:10.32604/ee.2024.054687 - 22 November 2024

    Abstract The primary factor contributing to frequency instability in microgrids is the inherent intermittency of renewable energy sources. This paper introduces novel dual-backup controllers utilizing advanced fractional order proportional integral derivative (FOPID) controllers to enhance frequency and tie-line power stability in microgrids amid increasing renewable energy integration. To improve load frequency control, the proposed controllers are applied to a two-area interconnected microgrid system incorporating diverse energy sources, such as wind turbines, photovoltaic cells, diesel generators, and various storage technologies. A novel meta-heuristic algorithm is adopted to select the optimal parameters of the proposed controllers. The efficacy… More >

  • Open Access

    ARTICLE

    Intelligent PID Control Method for Quadrotor UAV with Serial Humanoid Intelligence

    Linlin Zhang, Lvzhao Bai, Jianshu Liang, Zhiying Qin*, Yuejing Zhao

    Computer Systems Science and Engineering, Vol.48, No.6, pp. 1557-1579, 2024, DOI:10.32604/csse.2024.054237 - 22 November 2024

    Abstract Quadrotor unmanned aerial vehicles (UAVs) are widely used in inspection, agriculture, express delivery, and other fields owing to their low cost and high flexibility. However, the current UAV control system has shortcomings such as poor control accuracy and weak anti-interference ability to a certain extent. To address the control problem of a four-rotor UAV, we propose a method to enhance the controller’s accuracy by considering underactuated dynamics, nonlinearities, and external disturbances. A mathematical model is constructed based on the flight principles of the quadrotor UAV. We develop a control algorithm that combines humanoid intelligence with… More >

  • Open Access

    ARTICLE

    Adaptive Nonlinear PD Controller of Two-Wheeled Self-Balancing Robot with External Force

    Van-Truong Nguyen1,*, Dai-Nhan Duong1, Dinh-Hieu Phan1, Thanh-Lam Bui1, Xiem HoangVan2, Phan Xuan Tan3

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2337-2356, 2024, DOI:10.32604/cmc.2024.055412 - 18 November 2024

    Abstract This paper proposes an adaptive nonlinear proportional-derivative (ANPD) controller for a two-wheeled self-balancing robot (TWSB) modeled by the Lagrange equation with external forces. The proposed control scheme is designed based on the combination of a nonlinear proportional-derivative (NPD) controller and a genetic algorithm, in which the proportional-derivative (PD) parameters are updated online based on the tracking error and the preset error threshold. In addition, the genetic algorithm is employed to adaptively select initial controller parameters, contributing to system stability and improved control accuracy. The proposed controller is basic in design yet simple to implement. The… More >

  • Open Access

    ARTICLE

    Efficient Real-Time Devices Based on Accelerometer Using Machine Learning for HAR on Low-Performance Microcontrollers

    Manh-Tuyen Vi1, Duc-Nghia Tran2, Vu Thi Thuong3,4, Nguyen Ngoc Linh5,*, Duc-Tan Tran1,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1729-1756, 2024, DOI:10.32604/cmc.2024.055511 - 15 October 2024

    Abstract Analyzing physical activities through wearable devices is a promising research area for improving health assessment. This research focuses on the development of an affordable and real-time Human Activity Recognition (HAR) system designed to operate on low-performance microcontrollers. The system utilizes data from a body-worn accelerometer to recognize and classify human activities, providing a cost-effective, easy-to-use, and highly accurate solution. A key challenge addressed in this study is the execution of efficient motion recognition within a resource-constrained environment. The system employs a Random Forest (RF) classifier, which outperforms Gradient Boosting Decision Trees (GBDT), Support Vector Machines… More >

  • Open Access

    ARTICLE

    Precision Motion Control of Hydraulic Actuator Using Adaptive Back-Stepping Sliding Mode Controller

    Zhenshuai Wan1,2,*, Longwang Yue2, Yanfeng Wang2, Pu Zhao2

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1047-1065, 2024, DOI:10.32604/cmes.2024.053773 - 27 September 2024

    Abstract Hydraulic actuators are highly nonlinear when they are subjected to different types of model uncertainties and dynamic disturbances. These unfavorable factors adversely affect the control performance of the hydraulic actuator. Although various control methods have been employed to improve the tracking precision of the dynamic system, optimizing and adjusting control gain to mitigate the hydraulic actuator model uncertainties remains elusive. This study presents an adaptive back-stepping sliding mode controller (ABSMC) to enhance the trajectory tracking precision, where the virtual control law is constructed to replace the position error. The adaptive control theory is introduced in More >

  • Open Access

    ARTICLE

    A Double-Interactively Recurrent Fuzzy Cerebellar Model Articulation Controller Model Combined with an Improved Particle Swarm Optimization Method for Fall Detection

    Jyun-Guo Wang*

    Computer Systems Science and Engineering, Vol.48, No.5, pp. 1149-1170, 2024, DOI:10.32604/csse.2024.052931 - 13 September 2024

    Abstract In many Eastern and Western countries, falling birth rates have led to the gradual aging of society. Older adults are often left alone at home or live in a long-term care center, which results in them being susceptible to unsafe events (such as falls) that can have disastrous consequences. However, automatically detecting falls from video data is challenging, and automatic fall detection methods usually require large volumes of training data, which can be difficult to acquire. To address this problem, video kinematic data can be used as training data, thereby avoiding the requirement of creating… More >

  • Open Access

    REVIEW

    Open-Source Software Defined Networking Controllers: State-of-the-Art, Challenges and Solutions for Future Network Providers

    Johari Abdul Rahim1, Rosdiadee Nordin2,*, Oluwatosin Ahmed Amodu3,4

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 747-800, 2024, DOI:10.32604/cmc.2024.047009 - 18 July 2024

    Abstract Software Defined Networking (SDN) is programmable by separation of forwarding control through the centralization of the controller. The controller plays the role of the ‘brain’ that dictates the intelligent part of SDN technology. Various versions of SDN controllers exist as a response to the diverse demands and functions expected of them. There are several SDN controllers available in the open market besides a large number of commercial controllers; some are developed to meet carrier-grade service levels and one of the recent trends in open-source SDN controllers is the Open Network Operating System (ONOS). This paper… More >

  • Open Access

    ARTICLE

    Intelligent Fractional-Order Controller for SMES Systems in Renewable Energy-Based Microgrid

    Aadel M. Alatwi1,2, Abualkasim Bakeer3, Sherif A. Zaid1,*, Ibrahem E. Atawi1, Hani Albalawi1,4, Ahmed M. Kassem5

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1807-1830, 2024, DOI:10.32604/cmes.2024.048521 - 20 May 2024

    Abstract An autonomous microgrid that runs on renewable energy sources is presented in this article. It has a superconducting magnetic energy storage (SMES) device, wind energy-producing devices, and an energy storage battery. However, because such microgrids are nonlinear and the energy they create varies with time, controlling and managing the energy inside them is a difficult issue. Fractional-order proportional integral (FOPI) controller is recommended for the current research to enhance a standalone microgrid’s energy management and performance. The suggested dedicated control for the SMES comprises two loops: the outer loop, which uses the FOPI to regulate… More >

  • Open Access

    ARTICLE

    Reduced-Order Observer-Based LQR Controller Design for Rotary Inverted Pendulum

    Guogang Gao1, Lei Xu1, Tianpeng Huang2,*, Xuliang Zhao1, Lihua Huang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 305-323, 2024, DOI:10.32604/cmes.2024.047899 - 16 April 2024

    Abstract The Rotary Inverted Pendulum (RIP) is a widely used underactuated mechanical system in various applications such as bipedal robots and skyscraper stabilization where attitude control presents a significant challenge. Despite the implementation of various control strategies to maintain equilibrium, optimally tuning control gains to effectively mitigate uncertain nonlinearities in system dynamics remains elusive. Existing methods frequently rely on extensive experimental data or the designer’s expertise, presenting a notable drawback. This paper proposes a novel tracking control approach for RIP, utilizing a Linear Quadratic Regulator (LQR) in combination with a reduced-order observer. Initially, the RIP system More >

  • Open Access

    ARTICLE

    Research on Anti-Fluctuation Control of Winding Tension System Based on Feedforward Compensation

    Yujie Duan1, Jianguo Liang1,*, Jianglin Liu1, Haifeng Gao1, Yinhui Li2, Jinzhu Zhang1, Xinyu Wen3

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1239-1261, 2024, DOI:10.32604/cmes.2023.044400 - 29 January 2024

    Abstract In the fiber winding process, strong disturbance, uncertainty, strong coupling, and fiber friction complicate the winding constant tension control. In order to effectively reduce the influence of these problems on the tension output, this paper proposed a tension fluctuation rejection strategy based on feedforward compensation. In addition to the bias harmonic curve of the unknown state, the tension fluctuation also contains the influence of bounded noise. A tension fluctuation observer (TFO) is designed to cancel the uncertain periodic signal, in which the frequency generator is used to estimate the critical parameter information. Then, the fluctuation More >

Displaying 1-10 on page 1 of 144. Per Page