Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (17)
  • Open Access

    ARTICLE

    Programmable Logic Controller Block Monitoring System for Memory Attack Defense in Industrial Control Systems

    Mingyu Lee1, Jiho Shin2, Jung Taek Seo3,*

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2427-2442, 2023, DOI:10.32604/cmc.2023.041774 - 29 November 2023

    Abstract Cyberattacks targeting industrial control systems (ICS) are becoming more sophisticated and advanced than in the past. A programmable logic controller (PLC), a core component of ICS, controls and monitors sensors and actuators in the field. However, PLC has memory attack threats such as program injection and manipulation, which has long been a major target for attackers, and it is important to detect these attacks for ICS security. To detect PLC memory attacks, a security system is required to acquire and monitor PLC memory directly. In addition, the performance impact of the security system on the… More >

  • Open Access

    ARTICLE

    Information Security Evaluation of Industrial Control Systems Using Probabilistic Linguistic MCDM Method

    Wenshu Xu, Mingwei Lin*

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 199-222, 2023, DOI:10.32604/cmc.2023.041475 - 31 October 2023

    Abstract Industrial control systems (ICSs) are widely used in various fields, and the information security problems of ICSs are increasingly serious. The existing evaluation methods fail to describe the uncertain evaluation information and group evaluation information of experts. Thus, this paper introduces the probabilistic linguistic term sets (PLTSs) to model the evaluation information of experts. Meanwhile, we propose a probabilistic linguistic multi-criteria decision-making (PL-MCDM) method to solve the information security assessment problem of ICSs. Firstly, we propose a novel subscript equivalence distance measure of PLTSs to improve the existing methods. Secondly, we use the Best Worst… More >

  • Open Access

    ARTICLE

    Control System Design for Low Power Magnetic Bearings in a Flywheel Energy Storage System

    Tinnawat Hongphan1, Matthew O. T. Cole1,*, Chakkapong Chamroon1, Ziv Brand2

    Energy Engineering, Vol.120, No.1, pp. 147-161, 2023, DOI:10.32604/ee.2022.022821 - 27 October 2022

    Abstract This paper presents a theoretical and experimental study on controller design for the AMBs in a small-scale flywheel energy storage system, where the main goals are to achieve low energy consumption and improved rotordynamic stability. A H-infinity optimal control synthesis procedure is defined for the permanent-magnet-biased AMB-rotor system with 4 degrees of freedom. Through the choice of design weighting functions, notch filter characteristics are incorporated within the controller to reduce AMB current components caused by rotor vibration at the synchronous frequency and higher harmonics. Experimental tests are used to validate the controller design methodology and More >

  • Open Access

    ARTICLE

    Anomaly Detection for Industrial Internet of Things Cyberattacks

    Rehab Alanazi*, Ahamed Aljuhani

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 2361-2378, 2023, DOI:10.32604/csse.2023.026712 - 01 August 2022

    Abstract The evolution of the Internet of Things (IoT) has empowered modern industries with the capability to implement large-scale IoT ecosystems, such as the Industrial Internet of Things (IIoT). The IIoT is vulnerable to a diverse range of cyberattacks that can be exploited by intruders and cause substantial reputational and financial harm to organizations. To preserve the confidentiality, integrity, and availability of IIoT networks, an anomaly-based intrusion detection system (IDS) can be used to provide secure, reliable, and efficient IIoT ecosystems. In this paper, we propose an anomaly-based IDS for IIoT networks as an effective security… More >

  • Open Access

    ARTICLE

    Anomaly Detection Framework in Fog-to-Things Communication for Industrial Internet of Things

    Tahani Alatawi*, Ahamed Aljuhani

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 1067-1086, 2022, DOI:10.32604/cmc.2022.029283 - 18 May 2022

    Abstract The rapid development of the Internet of Things (IoT) in the industrial domain has led to the new term the Industrial Internet of Things (IIoT). The IIoT includes several devices, applications, and services that connect the physical and virtual space in order to provide smart, cost-effective, and scalable systems. Although the IIoT has been deployed and integrated into a wide range of industrial control systems, preserving security and privacy of such a technology remains a big challenge. An anomaly-based Intrusion Detection System (IDS) can be an effective security solution for maintaining the confidentiality, integrity, and… More >

  • Open Access

    ARTICLE

    Network Traffic Obfuscation System for IIoT-Cloud Control Systems

    Yangjae Lee1, Sung Hoon Baek2, Jung Taek Seo3, Ki-Woong Park1,*

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 4911-4929, 2022, DOI:10.32604/cmc.2022.026657 - 21 April 2022

    Abstract One of the latest technologies enabling remote control, operational efficiency upgrades, and real-time big-data monitoring in an industrial control system (ICS) is the IIoT-Cloud ICS, which integrates the Industrial Internet of Things (IIoT) and the cloud into the ICS. Although an ICS benefits from the application of IIoT and the cloud in terms of cost reduction, efficiency improvement, and real-time monitoring, the application of this technology to an ICS poses an unprecedented security risk by exposing its terminal devices to the outside world. An adversary can collect information regarding senders, recipients, and prime-time slots through… More >

  • Open Access

    ARTICLE

    Intelligent Forensic Investigation Using Optimal Stacked Autoencoder for Critical Industrial Infrastructures

    Abdullah S. AL-Malaise AL-Ghamdi1, Mahmoud Ragab2,3,4,*, F. J. Alsolami5, Hani Choudhry3,6, Ibrahim Rizqallah Alzahrani7

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 2275-2289, 2022, DOI:10.32604/cmc.2022.026226 - 29 March 2022

    Abstract Industrial Control Systems (ICS) can be employed on the industrial processes in order to reduce the manual labor and handle the complicated industrial system processes as well as communicate effectively. Internet of Things (IoT) integrates numerous sets of sensors and devices via a data network enabling independent processes. The incorporation of the IoT in the industrial sector leads to the design of Industrial Internet of Things (IIoT), which find use in water distribution system, power plants, etc. Since the IIoT is susceptible to different kinds of attacks due to the utilization of Internet connection, an… More >

  • Open Access

    ARTICLE

    Metaheuristic Based Resource Scheduling Technique for Distributed Robotic Control Systems

    P. Anandraj1,*, S. Ramabalan2

    Computer Systems Science and Engineering, Vol.42, No.2, pp. 795-811, 2022, DOI:10.32604/csse.2022.022107 - 04 January 2022

    Abstract The design of controllers for robots is a complex system that is to be dealt with several tasks in real time for enabling the robots to function independently. The distributed robotic control system can be used in real time for resolving various challenges such as localization, motion controlling, mapping, route planning, etc. The distributed robotic control system can manage different kinds of heterogenous devices. Designing a distributed robotic control system is a challenging process as it needs to operate effectually under different hardware configurations and varying computational requirements. For instance, scheduling of resources (such as… More >

  • Open Access

    ARTICLE

    Deep Deterministic Policy Gradient to Regulate Feedback Control Systems Using Reinforcement Learning

    Jehangir Arshad1, Ayesha Khan1, Mariam Aftab1, Mujtaba Hussain1, Ateeq Ur Rehman2, Shafiq Ahmad3, Adel M. Al-Shayea3, Muhammad Shafiq4,*

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 1153-1169, 2022, DOI:10.32604/cmc.2022.021917 - 03 November 2021

    Abstract Controlling feedback control systems in continuous action spaces has always been a challenging problem. Nevertheless, reinforcement learning is mainly an area of artificial intelligence (AI) because it has been used in process control for more than a decade. However, the existing algorithms are unable to provide satisfactory results. Therefore, this research uses a reinforcement learning (RL) algorithm to manage the control system. We propose an adaptive speed control of the motor system based on depth deterministic strategy gradient (DDPG). The actor-critic scenario using DDPG is implemented to build the RL agent. In addition, a framework… More >

  • Open Access

    ARTICLE

    Deep Learning Anomaly Detection Based on Hierarchical Status-Connection Features in Networked Control Systems

    Jianming Zhao1,2,3,4, Peng Zeng1,2,3,4,*, Chunyu Chen1,2,3,4, Zhiwei Dong5, Jongho Han6

    Intelligent Automation & Soft Computing, Vol.30, No.1, pp. 337-350, 2021, DOI:10.32604/iasc.2021.016966 - 26 July 2021

    Abstract As networked control systems continue to be widely used in large-scale industrial productions, industrial cyber-attacks have become an inevitable problem that can cause serious damage to critical infrastructures. In practice, industrial intrusion detection has been widely acknowledged to detect abnormal communication behaviors. However, unlike traditional IT systems, networked control systems have their own communication characteristics due to specific industrial communication protocols. Thus, simple cyber-attack modeling is inadequate and impractical for high-efficiency intrusion detection because the characteristics of network control systems are less considered. Based on the status information and transmission connection in industrial communication data… More >

Displaying 1-10 on page 1 of 17. Per Page