Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (35)
  • Open Access

    ARTICLE

    Research on the Control Strategy of Micro Wind-Hydrogen Coupled System Based on Wind Power Prediction and Hydrogen Storage System Charging/Discharging Regulation

    Yuanjun Dai, Haonan Li, Baohua Li*

    Energy Engineering, Vol.121, No.6, pp. 1607-1636, 2024, DOI:10.32604/ee.2024.047255

    Abstract This paper addresses the micro wind-hydrogen coupled system, aiming to improve the power tracking capability of micro wind farms, the regulation capability of hydrogen storage systems, and to mitigate the volatility of wind power generation. A predictive control strategy for the micro wind-hydrogen coupled system is proposed based on the ultra-short-term wind power prediction, the hydrogen storage state division interval, and the daily scheduled output of wind power generation. The control strategy maximizes the power tracking capability, the regulation capability of the hydrogen storage system, and the fluctuation of the joint output of the wind-hydrogen… More >

  • Open Access

    ARTICLE

    An Adaptive Control Strategy for Energy Storage Interface Converter Based on Analogous Virtual Synchronous Generator

    Feng Zhao, Jinshuo Zhang*, Xiaoqiang Chen, Ying Wang

    Energy Engineering, Vol.121, No.2, pp. 339-358, 2024, DOI:10.32604/ee.2023.043082

    Abstract In the DC microgrid, the lack of inertia and damping in power electronic converters results in poor stability of DC bus voltage and low inertia of the DC microgrid during fluctuations in load and photovoltaic power. To address this issue, the application of a virtual synchronous generator (VSG) in grid-connected inverters control is referenced and proposes a control strategy called the analogous virtual synchronous generator (AVSG) control strategy for the interface DC/DC converter of the battery in the microgrid. Besides, a flexible parameter adaptive control method is introduced to further enhance the inertial behavior of… More >

  • Open Access

    ARTICLE

    Research on the Follow-Up Control Strategy of Biaxial Fatigue Test of Wind Turbine Blade Based on Electromagnetic Excitation

    Wenzhe Guo1, Leian Zhang1,*, Chao Lv2, Weisheng Liu3, Jiabin Tian2

    Energy Engineering, Vol.120, No.10, pp. 2307-2323, 2023, DOI:10.32604/ee.2023.030029

    Abstract Aiming at the drift problem that the tracking control of the actual load relative to the target load during the electromagnetic excitation biaxial fatigue test of wind turbine blades is easy to drift, a biaxial fatigue testing machine for electromagnetic excitation is designed, and the following strategy of the actual load and the target load is studied. A Fast Transversal Recursive Least Squares algorithm based on fuzzy logic (Fuzzy FTRLS) is proposed to develop a fatigue loading following dynamic strategy, which adjusts the forgetting factor in the algorithm through fuzzy logic to overcome the contradiction More >

  • Open Access

    ARTICLE

    Model Predictive Control Strategy of Multi-Port Interline DC Power Flow Controller

    He Wang1, Xiangsheng Xu1, Guanye Shen2, Bian Jing1,*

    Energy Engineering, Vol.120, No.10, pp. 2251-2272, 2023, DOI:10.32604/ee.2023.028965

    Abstract There are issues with flexible DC transmission system such as a lack of control freedom over power flow. In order to tackle these issues, a DC power flow controller (DCPFC) is incorporated into a multi-terminal, flexible DC power grid. In recent years, a multi-port DC power flow controller based on a modular multi-level converter has become a focal point of research due to its simple structure and robust scalability. This work proposes a model predictive control (MPC) strategy for multi-port interline DC power flow controllers in order to improve their steady-state dynamic performance. Initially, the… More >

  • Open Access

    ARTICLE

    Improving the Transmission Efficiency of a WSN with the IACO Algorithm

    Wen-Tsai Sung1, Sung-Jung Hsiao2,*

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 1061-1076, 2023, DOI:10.32604/csse.2023.032700

    Abstract The goal of this study is to reduce the energy consumption of the sensing network and enhance the overall life cycle of the network. This study proposes a data fusion algorithm for wireless sensor networks based on improved ant colony optimization (IACO) to reduce the amount of data transmitted by wireless sensor networks (WSN). This study updates pheromones for multiple optimal routes to improve the global optimal route in search function. The algorithm proposed in this study can reduce node energy consumption, improve network load balancing and prolong network life cycle. Through data fusion, regression More >

  • Open Access

    ARTICLE

    Power Optimization Cooperative Control Strategy for Flexible Fast Interconnection Device with Energy Storage

    Mingming Shi1,*, Jun Zhang2, Xuefeng Ge1, Juntao Fei1, Jiajun Tan3

    Energy Engineering, Vol.120, No.8, pp. 1885-1897, 2023, DOI:10.32604/ee.2023.025788

    Abstract With the wide application of renewable energy power generation technology, the distribution network presents the characteristics of multi-source and complex structure. There are potential risks in the stability of power system, and the problem of power quality is becoming more and more serious. This paper studies and proposes a power optimization cooperative control strategy for flexible fast interconnection device with energy storage, which combines the flexible interconnection technology with the energy storage device. The primary technology is to regulate the active and reactive power of the converter. By comparing the actual power value of the More >

  • Open Access

    ARTICLE

    A Two-Layer Fuzzy Control Strategy for the Participation of Energy Storage Battery Systems in Grid Frequency Regulation

    Wei Chen1, Na Sun1, Zhicheng Ma2, Wenfei Liu2, Haiying Dong1,*

    Energy Engineering, Vol.120, No.6, pp. 1445-1464, 2023, DOI:10.32604/ee.2023.027158

    Abstract To address the frequency fluctuation problem caused by the power dynamic imbalance between the power system and the load when a large number of new energy sources are connected to the grid, a two-layer fuzzy control strategy is proposed for the participation of the energy storage battery system in FM. Firstly, considering the coordination of FM units responding to automatic power generation control commands, a comprehensive allocation strategy of two signals under automatic power generation control commands is proposed to give full play to the advantages of two FM signals while enabling better coordination of… More > Graphic Abstract

    A Two-Layer Fuzzy Control Strategy for the Participation of Energy Storage Battery Systems in Grid Frequency Regulation

  • Open Access

    ARTICLE

    Simulation Study of the Control Strategy of a DC Inverter Heat Pump Using a DC Distribution Network

    Siwei Han1,*, Xianglong Li2, Wei Zhao1, Linyu Wang1, Anqi Liang2, Shuang Zeng2

    Energy Engineering, Vol.120, No.6, pp. 1421-1444, 2023, DOI:10.32604/ee.2023.027094

    Abstract Photovoltaics, energy storage, direct current and flexibility (PEDF) are important pillars of achievement on the path to manufacturing nearly zero energy buildings (NZEBs). HVAC systems, which are an important part of public buildings, play a key role in adapting to PDEF systems. This research studied the basic principles and operational control strategies of a DC inverter heat pump using a DC distribution network with the aim of contributing to the development and application of small DC distribution systems. Along with the characteristics of a DC distribution network and different operating conditions, a DC inverter heat… More >

  • Open Access

    ARTICLE

    Research on Virtual DC Generator-Based Control Strategy of DC Microgrid with Photovoltaic and Energy Storage

    Feng Zhao, Chengrui Xiao*, Xiaoqiang Chen, Ying Wang

    Energy Engineering, Vol.120, No.6, pp. 1353-1370, 2023, DOI:10.32604/ee.2023.025976

    Abstract With the penetration of a large number of photovoltaic power generation units and power electronic converters, the DC microgrid shows low inertia characteristics, which might affect the stable operation of the microgrid in extreme cases. In order to enhance the “flexible features” of the interface converter connected to the DC bus, a control strategy of DC microgrid with photovoltaic and energy storage based on the virtual DC generator (VDCG) is proposed in this paper. The interface converters of the photovoltaic power generation system and the energy storage system simulates the inertia and damping characteristics of More >

  • Open Access

    ARTICLE

    Analysis of Additional Damping Control Strategy and Parameter Optimization for Improving Small Signal Stability of VSC-HVDC System

    Hui Fang1, Jingsen Zhou1, Hanjie Liu2,*, Yanxu Wang2, Hongji Xiang1, Yechun Xin2

    Energy Engineering, Vol.120, No.4, pp. 931-948, 2023, DOI:10.32604/ee.2023.025163

    Abstract The voltage source converter based high voltage direct current (VSC-HVDC) system is based on voltage source converter, and its control system is more complex. Also affected by the fast control of power electronics, oscillation phenomenon in wide frequency domain may occur. To address the problem of small signal stability of the VSC-HVDC system, a converter control strategy is designed to improve its small signal stability, and the risk of system oscillation is reduced by attaching a damping controller and optimizing the control parameters. Based on the modeling of the VSC-HVDC system, the general architecture of… More >

Displaying 1-10 on page 1 of 35. Per Page