Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (81)
  • Open Access

    ARTICLE

    An Expert System to Detect Political Arabic Articles Orientation Using CatBoost Classifier Boosted by Multi-Level Features

    Saad M. Darwish1,*, Abdul Rahman M. Sabri2, Dhafar Hamed Abd2, Adel A. Elzoghabi1

    Computer Systems Science and Engineering, Vol.48, No.6, pp. 1595-1624, 2024, DOI:10.32604/csse.2024.054615 - 22 November 2024

    Abstract The number of blogs and other forms of opinionated online content has increased dramatically in recent years. Many fields, including academia and national security, place an emphasis on automated political article orientation detection. Political articles (especially in the Arab world) are different from other articles due to their subjectivity, in which the author’s beliefs and political affiliation might have a significant influence on a political article. With categories representing the main political ideologies, this problem may be thought of as a subset of the text categorization (classification). In general, the performance of machine learning models… More >

  • Open Access

    ARTICLE

    The challenge of molecular selection in liver-limited metastatic colorectal cancer for surgical resection: a systematic review and meta-analysis in the context of current and future approaches

    ROSSANA RONCATO1,2, JERRY POLESEL3, FEDERICA TOSI4,5,*, ELENA PERUZZI1,*, ERIKA BRUGUGNOLI6, CLAUDIA LAURIA PANTANO7, MARIA FURFARO8, FILIPPO DI GIROLAMO9,10, ALESSANDRO NANI11, ARIANNA PANI4, NOEMI MILAN1, ELENA DE MATTIA1, ANDREA SARTORE-BIANCHI4,5, ERIKA CECCHIN1

    Oncology Research, Vol.32, No.9, pp. 1407-1422, 2024, DOI:10.32604/or.2024.049181 - 23 August 2024

    Abstract Objectives: Treatment of metastatic colorectal cancer (mCRC) includes resection of liver metastases (LM), however, no validated biomarker identifies patients most likely to benefit from this procedure. This meta-analysis aimed to assess the impact of the most relevant molecular alterations in cancer-related genes of CRC (i.e., RAS, BRAF, SMAD4, PIK3CA) as prognostic markers of survival and disease recurrence in patients with mCRC surgically treated by LM resection. Methods: A systematic literature review was performed to identify studies reporting data regarding survival and/or recurrence in patients that underwent complete liver resection for CRC LM, stratified according to… More > Graphic Abstract

    The challenge of molecular selection in liver-limited metastatic colorectal cancer for surgical resection: a systematic review and meta-analysis in the context of current and future approaches

  • Open Access

    ARTICLE

    Chinese Clinical Named Entity Recognition Using Multi-Feature Fusion and Multi-Scale Local Context Enhancement

    Meijing Li*, Runqing Huang, Xianxian Qi

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2283-2299, 2024, DOI:10.32604/cmc.2024.053630 - 15 August 2024

    Abstract Chinese Clinical Named Entity Recognition (CNER) is a crucial step in extracting medical information and is of great significance in promoting medical informatization. However, CNER poses challenges due to the specificity of clinical terminology, the complexity of Chinese text semantics, and the uncertainty of Chinese entity boundaries. To address these issues, we propose an improved CNER model, which is based on multi-feature fusion and multi-scale local context enhancement. The model simultaneously fuses multi-feature representations of pinyin, radical, Part of Speech (POS), word boundary with BERT deep contextual representations to enhance the semantic representation of text… More >

  • Open Access

    ARTICLE

    Fine-Tuning Cyber Security Defenses: Evaluating Supervised Machine Learning Classifiers for Windows Malware Detection

    Islam Zada1,*, Mohammed Naif Alatawi2, Syed Muhammad Saqlain1, Abdullah Alshahrani3, Adel Alshamran4, Kanwal Imran5, Hessa Alfraihi6

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2917-2939, 2024, DOI:10.32604/cmc.2024.052835 - 15 August 2024

    Abstract Malware attacks on Windows machines pose significant cybersecurity threats, necessitating effective detection and prevention mechanisms. Supervised machine learning classifiers have emerged as promising tools for malware detection. However, there remains a need for comprehensive studies that compare the performance of different classifiers specifically for Windows malware detection. Addressing this gap can provide valuable insights for enhancing cybersecurity strategies. While numerous studies have explored malware detection using machine learning techniques, there is a lack of systematic comparison of supervised classifiers for Windows malware detection. Understanding the relative effectiveness of these classifiers can inform the selection of… More >

  • Open Access

    ARTICLE

    IMPACT de la déprivation sociale sur les difficultés psychosociales au décours d’un cancer pédiatrique : une étude prospective

    Fanny Delehaye1,2,*, Olivier Dejardin1,3, Isabelle Pellier4, Ludivine Launay1,5, Maxime Esvan6, Damien Bodet2, Liana Carausu7, Julien Lejeune8, Frédéric Millot9, Caroline Thomas10, Virginie Gandemer11, Arnaud Alves1,12, Julien Rod1,13

    Psycho-Oncologie, Vol.18, No.2, pp. 117-126, 2024, DOI:10.32604/po.2024.043073 - 06 August 2024

    Abstract La période post-traitement une part fondamental de la prise en charge du cancer pédiatrique. Durant cette période, les difficultés scolaires et psychologiques chez les survivants d’un cancer pédiatriques (SCP) sont connues et peuvent être pronostic sur la bonne réintégration sociale. Cette étude estime l’influence de la déprivation sociale du foyer de l’enfant sur ces difficultés. Notre étude se base sur une base de données multicentrique, et se concentre sur les SCP avant reçu une évaluation psychosociale au cours de leur suivi, de 2013 à 2020. Nous rapportons les données des difficultés scolaires et psychologiques. Le… More >

  • Open Access

    ARTICLE

    Chemically Mediated Interactions between Grapevine, Aphid, Ladybird, and Ant in the Context of Insect Chemical Ecology

    Taghreed Alsufyani1,*, Noura J. Alotaibi2, Nour Houda M’sakni1, Mona A. Almalki1, Eman M. Alghamdi3

    Phyton-International Journal of Experimental Botany, Vol.93, No.7, pp. 1523-1542, 2024, DOI:10.32604/phyton.2024.050351 - 30 July 2024

    Abstract This study simplifies the complex relationship among grapevine plants, aphids, ladybirds, and ants, which is essential for effective pest management and ecological balance. This study investigated the impact of aphid attacks and the presence of ants and ladybirds on the volatile compounds profile released into the chemosphere of the community consisting of the common vine Vitis vinifera, the aphid Aphis illinoisensis, the ladybird Coccinella undecimpunctata-and the ant Tapinoma magnum. This study aims to analyze the volatile compounds emitted by the grapevine and surrounding insects in response to these intricate interactions. The extraction of volatile organic compounds (VOCs) was carried… More >

  • Open Access

    ARTICLE

    Orbit Weighting Scheme in the Context of Vector Space Information Retrieval

    Ahmad Ababneh1, Yousef Sanjalawe2, Salam Fraihat3,*, Salam Al-E’mari4, Hamzah Alqudah5

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1347-1379, 2024, DOI:10.32604/cmc.2024.050600 - 18 July 2024

    Abstract This study introduces the Orbit Weighting Scheme (OWS), a novel approach aimed at enhancing the precision and efficiency of Vector Space information retrieval (IR) models, which have traditionally relied on weighting schemes like tf-idf and BM25. These conventional methods often struggle with accurately capturing document relevance, leading to inefficiencies in both retrieval performance and index size management. OWS proposes a dynamic weighting mechanism that evaluates the significance of terms based on their orbital position within the vector space, emphasizing term relationships and distribution patterns overlooked by existing models. Our research focuses on evaluating OWS’s impact… More >

  • Open Access

    ARTICLE

    SGT-Net: A Transformer-Based Stratified Graph Convolutional Network for 3D Point Cloud Semantic Segmentation

    Suyi Liu1,*, Jianning Chi1, Chengdong Wu1, Fang Xu2,3,4, Xiaosheng Yu1

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4471-4489, 2024, DOI:10.32604/cmc.2024.049450 - 20 June 2024

    Abstract In recent years, semantic segmentation on 3D point cloud data has attracted much attention. Unlike 2D images where pixels distribute regularly in the image domain, 3D point clouds in non-Euclidean space are irregular and inherently sparse. Therefore, it is very difficult to extract long-range contexts and effectively aggregate local features for semantic segmentation in 3D point cloud space. Most current methods either focus on local feature aggregation or long-range context dependency, but fail to directly establish a global-local feature extractor to complete the point cloud semantic segmentation tasks. In this paper, we propose a Transformer-based… More >

  • Open Access

    ARTICLE

    Spatial and Contextual Path Network for Image Inpainting

    Dengyong Zhang1,2, Yuting Zhao1,2, Feng Li1,2, Arun Kumar Sangaiah3,4,*

    Intelligent Automation & Soft Computing, Vol.39, No.2, pp. 115-133, 2024, DOI:10.32604/iasc.2024.040847 - 21 May 2024

    Abstract Image inpainting is a kind of use known area of information technology to repair the loss or damage to the area. Image feature extraction is the core of image restoration. Getting enough space for information and a larger receptive field is very important to realize high-precision image inpainting. However, in the process of feature extraction, it is difficult to meet the two requirements of obtaining sufficient spatial information and large receptive fields at the same time. In order to obtain more spatial information and a larger receptive field at the same time, we put forward… More >

  • Open Access

    ARTICLE

    Combo Packet: An Encryption Traffic Classification Method Based on Contextual Information

    Yuancong Chai, Yuefei Zhu*, Wei Lin, Ding Li

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1223-1243, 2024, DOI:10.32604/cmc.2024.049904 - 25 April 2024

    Abstract With the increasing proportion of encrypted traffic in cyberspace, the classification of encrypted traffic has become a core key technology in network supervision. In recent years, many different solutions have emerged in this field. Most methods identify and classify traffic by extracting spatiotemporal characteristics of data flows or byte-level features of packets. However, due to changes in data transmission mediums, such as fiber optics and satellites, temporal features can exhibit significant variations due to changes in communication links and transmission quality. Additionally, partial spatial features can change due to reasons like data reordering and retransmission.… More >

Displaying 1-10 on page 1 of 81. Per Page