Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (62)
  • Open Access

    ARTICLE

    Optimization of Truss Structures Using Nature-Inspired Algorithms with Frequency and Stress Constraints

    Sanjog Chhetri Sapkota1,2, Liborio Cavaleri3, Ajaya Khatri4, Siddhi Pandey5, Satish Paudel6, Panagiotis G. Asteris7,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.069691 - 29 January 2026

    Abstract Optimization is the key to obtaining efficient utilization of resources in structural design. Due to the complex nature of truss systems, this study presents a method based on metaheuristic modelling that minimises structural weight under stress and frequency constraints. Two new algorithms, the Red Kite Optimization Algorithm (ROA) and Secretary Bird Optimization Algorithm (SBOA), are utilized on five benchmark trusses with 10, 18, 37, 72, and 200-bar trusses. Both algorithms are evaluated against benchmarks in the literature. The results indicate that SBOA always reaches a lighter optimal. Designs with reducing structural weight ranging from 0.02%… More >

  • Open Access

    ARTICLE

    From Budget-Aware Preferences to Optimal Composition: A Dual-Stage Framework for Wireless Energy Service Optimization

    Haotian Zhang, Jing Li*, Ming Zhu, Zhiyong Zhao, Hongli Su, Liming Sun

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072381 - 12 January 2026

    Abstract In the wireless energy transmission service composition optimization problem, a key challenge is accurately capturing users’ preferences for service criteria under complex influencing factors, and optimally selecting a composition solution under their budget constraints. Existing studies typically evaluate satisfaction solely based on energy transmission capacity, while overlooking critical factors such as price and trustworthiness of the provider, leading to a mismatch between optimization outcomes and user needs. To address this gap, we construct a user satisfaction evaluation model for multi-user and multi-provider scenarios, systematically incorporating service price, transmission capacity, and trustworthiness into the satisfaction assessment… More >

  • Open Access

    REVIEW

    Implementation of Human-AI Interaction in Reinforcement Learning: Literature Review and Case Studies

    Shaoping Xiao1,*, Zhaoan Wang1, Junchao Li2, Caden Noeller1, Jiefeng Jiang3, Jun Wang4

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-62, 2026, DOI:10.32604/cmc.2025.072146 - 09 December 2025

    Abstract The integration of human factors into artificial intelligence (AI) systems has emerged as a critical research frontier, particularly in reinforcement learning (RL), where human-AI interaction (HAII) presents both opportunities and challenges. As RL continues to demonstrate remarkable success in model-free and partially observable environments, its real-world deployment increasingly requires effective collaboration with human operators and stakeholders. This article systematically examines HAII techniques in RL through both theoretical analysis and practical case studies. We establish a conceptual framework built upon three fundamental pillars of effective human-AI collaboration: computational trust modeling, system usability, and decision understandability. Our… More >

  • Open Access

    ARTICLE

    Federated Multi-Label Feature Selection via Dual-Layer Hybrid Breeding Cooperative Particle Swarm Optimization with Manifold and Sparsity Regularization

    Songsong Zhang1, Huazhong Jin1,2,*, Zhiwei Ye1,2, Jia Yang1,2, Jixin Zhang1,2, Dongfang Wu1,2, Xiao Zheng1,2, Dingfeng Song1

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-19, 2026, DOI:10.32604/cmc.2025.068044 - 10 November 2025

    Abstract Multi-label feature selection (MFS) is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels. However, traditional centralized methods face significant challenges in privacy-sensitive and distributed settings, often neglecting label dependencies and suffering from low computational efficiency. To address these issues, we introduce a novel framework, Fed-MFSDHBCPSO—federated MFS via dual-layer hybrid breeding cooperative particle swarm optimization algorithm with manifold and sparsity regularization (DHBCPSO-MSR). Leveraging the federated learning paradigm, Fed-MFSDHBCPSO allows clients to perform local feature selection (FS) using DHBCPSO-MSR. Locally selected feature subsets are encrypted with differential privacy (DP) and transmitted… More >

  • Open Access

    ARTICLE

    Optimization and Sensitivity Analysis of Non-Isothermal Carreau Fluid Flow in Roll Coating Systems with Fixed Boundary Constraints: A Comparative Investigation

    Mujahid Islam1, Fateh Ali1,*, Xinlong Feng1,*, M. Zahid2, Sana Naz Maqbool1

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3511-3561, 2025, DOI:10.32604/cmes.2025.073678 - 23 December 2025

    Abstract Roll coating is a vital industrial process used in printing, packaging, and polymer film production, where maintaining a uniform coating is critical for product quality and efficiency. This work models non-isothermal Carreau fluid flow between a rotating roll and a stationary wall under fixed boundary constraints to evaluate how non-Newtonian and thermal effects influence coating performance. The governing equations are transformed into non-dimensional form and simplified using lubrication approximation theory. Approximate analytical solutions are obtained via the perturbation technique, while numerical results are computed using both the finite difference method and the BVP-Midrich technique. Furthermore, More >

  • Open Access

    ARTICLE

    State-Space Reduction Techniques Exploiting Specific Constraints for Quantum Search Initialization, Application to an Outage Planning Problem

    Rodolphe Griset1,#,*, Ioannis Lavdas2,§, Jiří Guth Jarkovský3

    Journal of Quantum Computing, Vol.7, pp. 81-105, 2025, DOI:10.32604/jqc.2025.066064 - 08 December 2025

    Abstract Quantum search has emerged as one of the most promising fields in quantum computing. State-of-the-art quantum search algorithms enable the search for specific elements in a distribution by monotonically increasing the density of these elements relative to the rest of the distribution. These kinds of algorithms demonstrate a theoretical quadratic speed-up on the number of queries compared to classical search algorithms in unstructured spaces. Unfortunately, the major part of the existing literature applies quantum search to problems whose size grows exponentially with the input size without exploiting any specific problem structure, rendering this kind of… More >

  • Open Access

    PROCEEDINGS

    A Fixed-Time Anti-Saturation Backstepping Guidance Law with Acceleration Constraints

    Tianfeng Li*, Yonghua Fan

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.4, pp. 1-1, 2025, DOI:10.32604/icces.2025.011408

    Abstract A fixed-time anti-saturation backstepping guidance law (FTABGL) is designed for interceptor under acceleration input constraints. Firstly, an adaptive fixed-time anti-saturation compensator (AFAC) is proposed to ensure the stability of saturated system and drive it to faster leave the saturated region. Compared with conventional anti-saturation compensators, the auxiliary variable of AFAC is able to realize faster response speed and higher convergent precision when saturation disappears, which avoids the impact on convergent characteristics of original tracking error. In addition, the novel adaptive law in AFAC can further shorten the duration of saturation and improve the convergent speed… More >

  • Open Access

    ARTICLE

    Extending DDPG with Physics-Informed Constraints for Energy-Efficient Robotic Control

    Abubakar Elsafi1,*, Arafat Abdulgader Mohammed Elhag2, Lubna A. Gabralla3, Ali Ahmed4, Ashraf Osman Ibrahim5

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 621-647, 2025, DOI:10.32604/cmes.2025.072726 - 30 October 2025

    Abstract Energy efficiency stands as an essential factor when implementing deep reinforcement learning (DRL) policies for robotic control systems. Standard algorithms, including Deep Deterministic Policy Gradient (DDPG), primarily optimize task rewards but at the cost of excessively high energy consumption, making them impractical for real-world robotic systems. To address this limitation, we propose Physics-Informed DDPG (PI-DDPG), which integrates physics-based energy penalties to develop energy-efficient yet high-performing control policies. The proposed method introduces adaptive physics-informed constraints through a dynamic weighting factor (), enabling policies that balance reward maximization with energy savings. Our motivation is to overcome the… More >

  • Open Access

    ARTICLE

    Requirements and Constraints of Forecasting Algorithms Required in Local Flexibility Markets

    Alex Segura*, Joaquim Meléndez

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 649-672, 2025, DOI:10.32604/cmes.2025.070954 - 30 October 2025

    Abstract The increasing use of renewable energy sources, combined with the increase in electricity demand, has highlighted the importance of energy flexibility management in electrical grids. Energy flexibility is the capacity that generators and consumers have to change production and/or consumption to support grid operation, ensuring the stability and efficiency of the grid. Thus, Local Flexibility Markets (LFMs) are market-oriented mechanisms operated at different time horizons that support flexibility provision and trading at the distribution level, where the Distribution System Operators (DSOs) are the flexibility-demanding actors, and prosumers are the flexibility providers. This paper investigates the… More >

  • Open Access

    ARTICLE

    Towards Secure and Efficient Human Fall Detection: Sensor-Visual Fusion via Gramian Angular Field with Federated CNN

    Md Sabir Hossain1, Md Mahfuzur Rahman1,2,*, Mufti Mahmud1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 1087-1116, 2025, DOI:10.32604/cmes.2025.068779 - 30 October 2025

    Abstract This article presents a human fall detection system that addresses two critical challenges: privacy preservation and detection accuracy. We propose a comprehensive framework that integrates state-of-the-art machine learning models, multimodal data fusion, federated learning (FL), and Karush-Kuhn-Tucker (KKT)-based resource optimization. The system fuses data from wearable sensors and cameras using Gramian Angular Field (GAF) encoding to capture rich spatial-temporal features. To protect sensitive data, we adopt a privacy-preserving FL setup, where model training occurs locally on client devices without transferring raw data. A custom convolutional neural network (CNN) is designed to extract robust features from More > Graphic Abstract

    Towards Secure and Efficient Human Fall Detection: Sensor-Visual Fusion via Gramian Angular Field with Federated CNN

Displaying 1-10 on page 1 of 62. Per Page