Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (85)
  • Open Access

    PROCEEDINGS

    Topology Optimization of Mega-Casting Thin-Walled Structures of Vehicle Body with Stiffness Objective and Process Filling Constraints

    Jiayu Chen1, Yingchun Bai1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.011393

    Abstract Mega-casting techniques are widely used to manufacture large piece of thin-walled structures for vehicle body in Automotive industries, especially with the rapid growing electric vehicle market. Topology optimization is effective design method to reach higher mechanical performance yet lightweight potential for casting structures [1-3]. Most of existing works is focused on geometric-type casting constraints such as drawn angle, partion line, undercut, and enclose holes. However, the challenges in mega-casting arise from the complexities in the casting process such as filling and solidification, and the corresponding defects have larger influences on the structural performances [4-6]. Partial… More >

  • Open Access

    ARTICLE

    Intelligent Power Grid Load Transferring Based on Safe Action-Correction Reinforcement Learning

    Fuju Zhou*, Li Li, Tengfei Jia, Yongchang Yin, Aixiang Shi, Shengrong Xu

    Energy Engineering, Vol.121, No.6, pp. 1697-1711, 2024, DOI:10.32604/ee.2024.047680 - 21 May 2024

    Abstract When a line failure occurs in a power grid, a load transfer is implemented to reconfigure the network by changing the states of tie-switches and load demands. Computation speed is one of the major performance indicators in power grid load transfer, as a fast load transfer model can greatly reduce the economic loss of post-fault power grids. In this study, a reinforcement learning method is developed based on a deep deterministic policy gradient. The tedious training process of the reinforcement learning model can be conducted offline, so the model shows satisfactory performance in real-time operation, More >

  • Open Access

    ARTICLE

    Energy-Saving Distributed Flexible Job Shop Scheduling Optimization with Dual Resource Constraints Based on Integrated Q-Learning Multi-Objective Grey Wolf Optimizer

    Hongliang Zhang1,2, Yi Chen1, Yuteng Zhang1, Gongjie Xu3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1459-1483, 2024, DOI:10.32604/cmes.2024.049756 - 20 May 2024

    Abstract The distributed flexible job shop scheduling problem (DFJSP) has attracted great attention with the growth of the global manufacturing industry. General DFJSP research only considers machine constraints and ignores worker constraints. As one critical factor of production, effective utilization of worker resources can increase productivity. Meanwhile, energy consumption is a growing concern due to the increasingly serious environmental issues. Therefore, the distributed flexible job shop scheduling problem with dual resource constraints (DFJSP-DRC) for minimizing makespan and total energy consumption is studied in this paper. To solve the problem, we present a multi-objective mathematical model for… More >

  • Open Access

    ARTICLE

    Nonlinear Registration of Brain Magnetic Resonance Images with Cross Constraints of Intensity and Structure

    Han Zhou1,2, Hongtao Xu1,2, Xinyue Chang1,2, Wei Zhang1,2, Heng Dong1,2,*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2295-2313, 2024, DOI:10.32604/cmc.2024.047754 - 15 May 2024

    Abstract Many deep learning-based registration methods rely on a single-stream encoder-decoder network for computing deformation fields between 3D volumes. However, these methods often lack constraint information and overlook semantic consistency, limiting their performance. To address these issues, we present a novel approach for medical image registration called the Dual-VoxelMorph, featuring a dual-channel cross-constraint network. This innovative network utilizes both intensity and segmentation images, which share identical semantic information and feature representations. Two encoder-decoder structures calculate deformation fields for intensity and segmentation images, as generated by the dual-channel cross-constraint network. This design facilitates bidirectional communication between grayscale More >

  • Open Access

    ARTICLE

    A Multi-Constraint Path Optimization Scheme Based on Information Fusion in Software Defined Network

    Jinlin Xu1,2, Wansu Pan1,*, Longle Cheng1,2, Haibo Tan1,2, Munan Yuan1,*, Xiaofeng Li1,2

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1399-1418, 2024, DOI:10.32604/cmc.2024.049622 - 25 April 2024

    Abstract The existing multipath routing in Software Defined Network (SDN) is relatively blind and inefficient, and there is a lack of cooperation between the terminal and network sides, making it difficult to achieve dynamic adaptation of service requirements and network resources. To address these issues, we propose a multi-constraint path optimization scheme based on information fusion in SDN. The proposed scheme collects network topology and network state information on the network side and computes disjoint paths between end hosts. It uses the Fuzzy Analytic Hierarchy Process (FAHP) to calculate the weight coefficients of multiple constrained parameters… More >

  • Open Access

    ARTICLE

    Probabilistic-Ellipsoid Hybrid Reliability Multi-Material Topology Optimization Method Based on Stress Constraint

    Zibin Mao1, Qinghai Zhao1,2,*, Liang Zhang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 757-792, 2024, DOI:10.32604/cmes.2024.048016 - 16 April 2024

    Abstract This paper proposes a multi-material topology optimization method based on the hybrid reliability of the probability-ellipsoid model with stress constraint for the stochastic uncertainty and epistemic uncertainty of mechanical loads in optimization design. The probabilistic model is combined with the ellipsoidal model to describe the uncertainty of mechanical loads. The topology optimization formula is combined with the ordered solid isotropic material with penalization (ordered-SIMP) multi-material interpolation model. The stresses of all elements are integrated into a global stress measurement that approximates the maximum stress using the normalized p-norm function. Furthermore, the sequential optimization and reliability assessment… More >

  • Open Access

    ARTICLE

    Unknown DDoS Attack Detection with Fuzzy C-Means Clustering and Spatial Location Constraint Prototype Loss

    Thanh-Lam Nguyen1, Hao Kao1, Thanh-Tuan Nguyen2, Mong-Fong Horng1,*, Chin-Shiuh Shieh1,*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2181-2205, 2024, DOI:10.32604/cmc.2024.047387 - 27 February 2024

    Abstract Since its inception, the Internet has been rapidly evolving. With the advancement of science and technology and the explosive growth of the population, the demand for the Internet has been on the rise. Many applications in education, healthcare, entertainment, science, and more are being increasingly deployed based on the internet. Concurrently, malicious threats on the internet are on the rise as well. Distributed Denial of Service (DDoS) attacks are among the most common and dangerous threats on the internet today. The scale and complexity of DDoS attacks are constantly growing. Intrusion Detection Systems (IDS) have… More >

  • Open Access

    REVIEW

    AI Fairness–From Machine Learning to Federated Learning

    Lalit Mohan Patnaik1,5, Wenfeng Wang2,3,4,5,6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1203-1215, 2024, DOI:10.32604/cmes.2023.029451 - 29 January 2024

    Abstract This article reviews the theory of fairness in AI–from machine learning to federated learning, where the constraints on precision AI fairness and perspective solutions are also discussed. For a reliable and quantitative evaluation of AI fairness, many associated concepts have been proposed, formulated and classified. However, the inexplicability of machine learning systems makes it almost impossible to include all necessary details in the modelling stage to ensure fairness. The privacy worries induce the data unfairness and hence, the biases in the datasets for evaluating AI fairness are unavoidable. The imbalance between algorithms’ utility and humanization More >

  • Open Access

    ARTICLE

    Adaptive H Filtering Algorithm for Train Positioning Based on Prior Combination Constraints

    Xiuhui Diao1, Pengfei Wang1,2,*, Weidong Li2, Xianwu Chu2, Yunming Wang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1795-1812, 2024, DOI:10.32604/cmes.2023.030008 - 17 November 2023

    Abstract To solve the problem of data fusion for prior information such as track information and train status in train positioning, an adaptive H filtering algorithm with combination constraint is proposed, which fuses prior information with other sensor information in the form of constraints. Firstly, the train precise track constraint method of the train is proposed, and the plane position constraint and train motion state constraints are analysed. A model for combining prior information with constraints is established. Then an adaptive H filter with combination constraints is derived based on the adaptive adjustment method of the robustness More >

  • Open Access

    ARTICLE

    A Method of Integrating Length Constraints into Encoder-Decoder Transformer for Abstractive Text Summarization

    Ngoc-Khuong Nguyen1,2, Dac-Nhuong Le1, Viet-Ha Nguyen2, Anh-Cuong Le3,*

    Intelligent Automation & Soft Computing, Vol.38, No.1, pp. 1-18, 2023, DOI:10.32604/iasc.2023.037083 - 26 January 2024

    Abstract Text summarization aims to generate a concise version of the original text. The longer the summary text is, the more detailed it will be from the original text, and this depends on the intended use. Therefore, the problem of generating summary texts with desired lengths is a vital task to put the research into practice. To solve this problem, in this paper, we propose a new method to integrate the desired length of the summarized text into the encoder-decoder model for the abstractive text summarization problem. This length parameter is integrated into the encoding phase More >

Displaying 1-10 on page 1 of 85. Per Page