Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (58)
  • Open Access

    ARTICLE

    Bias Calibration under Constrained Communication Using Modified Kalman Filter: Algorithm Design and Application to Gyroscope Parameter Error Calibration

    Qi Li, Yifan Wang*, Yuxi Liu, Xingjing She, Yixuan Wu

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074066 - 29 January 2026

    Abstract In data communication, limited communication resources often lead to measurement bias, which adversely affects subsequent system estimation if not effectively handled. This paper proposes a novel bias calibration algorithm under communication constraints to achieve accurate system states of the interested system. An output-based event-triggered scheme is first employed to alleviate transmission burden. Accounting for the limited-communication-induced measurement bias, a novel bias calibration algorithm following the Kalman filtering line is developed to restrain the effect of the measurement bias on system estimation, thereby achieving accurate system state estimates. Subsequently, the Field Programmable Gate Array (FPGA) implementation More >

  • Open Access

    ARTICLE

    Mitigating Attribute Inference in Split Learning via Channel Pruning and Adversarial Training

    Afnan Alhindi*, Saad Al-Ahmadi, Mohamed Maher Ben Ismail

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072625 - 12 January 2026

    Abstract Split Learning (SL) has been promoted as a promising collaborative machine learning technique designed to address data privacy and resource efficiency. Specifically, neural networks are divided into client and server sub-networks in order to mitigate the exposure of sensitive data and reduce the overhead on client devices, thereby making SL particularly suitable for resource-constrained devices. Although SL prevents the direct transmission of raw data, it does not alleviate entirely the risk of privacy breaches. In fact, the data intermediately transmitted to the server sub-model may include patterns or information that could reveal sensitive data. Moreover,… More >

  • Open Access

    ARTICLE

    Constraint Intensity-Driven Evolutionary Multitasking for Constrained Multi-Objective Optimization

    Leyu Zheng1, Mingming Xiao1,*, Yi Ren2, Ke Li1, Chang Sun1

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072036 - 12 January 2026

    Abstract In a wide range of engineering applications, complex constrained multi-objective optimization problems (CMOPs) present significant challenges, as the complexity of constraints often hampers algorithmic convergence and reduces population diversity. To address these challenges, we propose a novel algorithm named Constraint Intensity-Driven Evolutionary Multitasking (CIDEMT), which employs a two-stage, tri-task framework to dynamically integrates problem structure and knowledge transfer. In the first stage, three cooperative tasks are designed to explore the Constrained Pareto Front (CPF), the Unconstrained Pareto Front (UPF), and the ε-relaxed constraint boundary, respectively. A CPF-UPF relationship classifier is employed to construct a problem-type-aware… More >

  • Open Access

    ARTICLE

    An Improved Variant of Multi-Population Cooperative Constrained Multi-Objective Optimization (MCCMO) for Multi-Objective Optimization Problem

    Muhammad Waqar Khan1,*, Adnan Ahmed Siddiqui1, Syed Sajjad Hussain Rizvi2

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-15, 2026, DOI:10.32604/cmc.2025.070858 - 09 December 2025

    Abstract The multi-objective optimization problems, especially in constrained environments such as power distribution planning, demand robust strategies for discovering effective solutions. This work presents the improved variant of the Multi-population Cooperative Constrained Multi-Objective Optimization (MCCMO) Algorithm, termed Adaptive Diversity Preservation (ADP). This enhancement is primarily focused on the improvement of constraint handling strategies, local search integration, hybrid selection approaches, and adaptive parameter control. The improved variant was experimented on with the RWMOP50 power distribution system planning benchmark. As per the findings, the improved variant outperformed the original MCCMO across the eleven performance metrics, particularly in terms… More >

  • Open Access

    ARTICLE

    HDFPM: A Heterogeneous Disk Failure Prediction Method Based on Time Series Features

    Zhongrui Jing1, Hongzhang Yang1,*, Jiangpu Guo2

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-25, 2026, DOI:10.32604/cmc.2025.067759 - 09 December 2025

    Abstract Hard disk drives (HDDs) serve as the primary storage devices in modern data centers. Once a failure occurs, it often leads to severe data loss, significantly degrading the reliability of storage systems. Numerous studies have proposed machine learning-based HDD failure prediction models. However, the Self-Monitoring, Analysis, and Reporting Technology (SMART) attributes differ across HDD manufacturers. We define hard drives of the same brand and model as homogeneous HDD groups, and those from different brands or models as heterogeneous HDD groups. In practical engineering scenarios, a data center is often composed of a heterogeneous population of… More >

  • Open Access

    ARTICLE

    Securing IoT Ecosystems: Experimental Evaluation of Modern Lightweight Cryptographic Algorithms and Their Performance

    Mircea Ţălu1,2,*

    Journal of Cyber Security, Vol.7, pp. 565-587, 2025, DOI:10.32604/jcs.2025.073690 - 11 December 2025

    Abstract The rapid proliferation of Internet of Things (IoT) devices has intensified the demand for cryptographic solutions that balance security, performance, and resource efficiency. However, existing studies often focus on isolated algorithmic families, lacking a comprehensive structural and experimental comparison across diverse lightweight cryptographic designs. This study addresses that gap by providing an integrated analysis of modern lightweight cryptographic algorithms spanning six structural classes—Substitution–Permutation Network (SPN), Feistel Network (FN), Generalized Feistel Network (GFN), Addition–Rotation–XOR (ARX), Nonlinear Feedback Shift Register (NLFSR), and Hybrid models—evaluated on resource-constrained IoT platforms. The key contributions include: (i) establishing a unified benchmarking… More >

  • Open Access

    ARTICLE

    A Multi-Grid, Single-Mesh Online Learning Framework for Stress-Constrained Topology Optimization Based on Isogeometric Formulation

    Kangjie Li, Wenjing Ye*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1665-1688, 2025, DOI:10.32604/cmes.2025.072447 - 26 November 2025

    Abstract Recent progress in topology optimization (TO) has seen a growing integration of machine learning to accelerate computation. Among these, online learning stands out as a promising strategy for large-scale TO tasks, as it eliminates the need for pre-collected training datasets by updating surrogate models dynamically using intermediate optimization data. Stress-constrained lightweight design is an important class of problem with broad engineering relevance. Most existing frameworks use pixel or voxel-based representations and employ the finite element method (FEM) for analysis. The limited continuity across finite elements often compromises the accuracy of stress evaluation. To overcome this… More >

  • Open Access

    ARTICLE

    Neighbor Dual-Consistency Constrained Attribute-Graph Clustering#

    Tian Tian1,2, Boyue Wang1,2, Xiaxia He1,2,*, Wentong Wang3, Meng Wang1

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 4885-4898, 2025, DOI:10.32604/cmc.2025.067795 - 23 October 2025

    Abstract Attribute-graph clustering aims to divide the graph nodes into distinct clusters in an unsupervised manner, which usually encodes the node attribute feature and the corresponding graph structure into a latent feature space. However, traditional attribute-graph clustering methods often neglect the effect of neighbor information on clustering, leading to suboptimal clustering results as they fail to fully leverage the rich contextual information provided by neighboring nodes, which is crucial for capturing the intrinsic relationships between nodes and improving clustering performance. In this paper, we propose a novel Neighbor Dual-Consistency Constrained Attribute-Graph Clustering that leverages information from… More >

  • Open Access

    ARTICLE

    A Novel Multi-Objective Topology Optimization Method for Stiffness and Strength-Constrained Design Using the SIMP Approach

    Jianchang Hou1, Zhanpeng Jiang1, Fenghe Wu1, Hui Lian1, Zhaohua Wang2, Zijian Liu3, Weicheng Li1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 1545-1572, 2025, DOI:10.32604/cmes.2025.068482 - 31 August 2025

    Abstract In this paper, a topology optimization method for coordinated stiffness and strength design is proposed under mass constraints, utilizing the Solid Isotropic Material with Penalization approach. Element densities are regulated through sensitivity filtering to mitigate numerical instabilities associated with stress concentrations. A p-norm aggregation function is employed to globalize local stress constraints, and a normalization technique linearly weights strain energy and stress, transforming the multi-objective problem into a single-objective formulation. The sensitivity of the objective function with respect to design variables is rigorously derived. Three numerical examples are presented, comparing the optimized structures in terms More >

  • Open Access

    ARTICLE

    C-BIVM: A Cognitive-Based Integrity Verification Model for IoT-Driven Smart Cities

    Radhika Kumari1, Kiranbir Kaur1, Ahmad Almogren2, Ayman Altameem3, Salil Bharany4,*, Yazeed Yasin Ghadi5, Ateeq Ur Rehman6,*

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5509-5525, 2025, DOI:10.32604/cmc.2025.064247 - 30 July 2025

    Abstract The exponential growth of the Internet of Things (IoT) has revolutionized various domains such as healthcare, smart cities, and agriculture, generating vast volumes of data that require secure processing and storage in cloud environments. However, reliance on cloud infrastructure raises critical security challenges, particularly regarding data integrity. While existing cryptographic methods provide robust integrity verification, they impose significant computational and energy overheads on resource-constrained IoT devices, limiting their applicability in large-scale, real-time scenarios. To address these challenges, we propose the Cognitive-Based Integrity Verification Model (C-BIVM), which leverages Belief-Desire-Intention (BDI) cognitive intelligence and algebraic signatures to… More >

Displaying 1-10 on page 1 of 58. Per Page