Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    Revolutionizing Automotive Security: Connected Vehicle Security Blockchain Solutions for Enhancing Physical Flow in the Automotive Supply Chain

    Khadija El Fellah1,*, Ikram El Azami2,*, Adil El Makrani2, Habiba Bouijij3, Oussama El Azzouzy4

    Computer Systems Science and Engineering, Vol.49, pp. 99-122, 2025, DOI:10.32604/csse.2024.057754 - 03 January 2025

    Abstract The rapid growth of the automotive industry has raised significant concerns about the security of connected vehicles and their integrated supply chains, which are increasingly vulnerable to advanced cyber threats. Traditional authentication methods have proven insufficient, exposing systems to risks such as Sybil, Denial of Service (DoS), and Eclipse attacks. This study critically examines the limitations of current security protocols, focusing on authentication and data exchange vulnerabilities, and explores blockchain technology as a potential solution. Blockchain’s decentralized and cryptographically secure framework can significantly enhance Vehicle-to-Vehicle (V2V) communication, ensure data integrity, and enable transparent, immutable transactions More >

  • Open Access

    ARTICLE

    Heterogeneous Task Allocation Model and Algorithm for Intelligent Connected Vehicles

    Neng Wan1,2, Guangping Zeng1,*, Xianwei Zhou1

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4281-4302, 2024, DOI:10.32604/cmc.2024.054794 - 12 September 2024

    Abstract With the development of vehicles towards intelligence and connectivity, vehicular data is diversifying and growing dramatically. A task allocation model and algorithm for heterogeneous Intelligent Connected Vehicle (ICV) applications are proposed for the dispersed computing network composed of heterogeneous task vehicles and Network Computing Points (NCPs). Considering the amount of task data and the idle resources of NCPs, a computing resource scheduling model for NCPs is established. Taking the heterogeneous task execution delay threshold as a constraint, the optimization problem is described as the problem of maximizing the utilization of computing resources by NCPs. The… More >

  • Open Access

    ARTICLE

    FADSF: A Data Sharing Model for Intelligent Connected Vehicles Based on Blockchain Technology

    Yan Sun, Caiyun Liu, Jun Li, Yitong Liu*

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2351-2362, 2024, DOI:10.32604/cmc.2024.048903 - 15 August 2024

    Abstract With the development of technology, the connected vehicle has been upgraded from a traditional transport vehicle to an information terminal and energy storage terminal. The data of ICV (intelligent connected vehicles) is the key to organically maximizing their efficiency. However, in the context of increasingly strict global data security supervision and compliance, numerous problems, including complex types of connected vehicle data, poor data collaboration between the IT (information technology) domain and OT (operation technology) domain, different data format standards, lack of shared trust sources, difficulty in ensuring the quality of shared data, lack of data… More >

  • Open Access

    ARTICLE

    Connected Vehicles Computation Task Offloading Based on Opportunism in Cooperative Edge Computing

    Duan Xue1,2, Yan Guo1,*, Ning Li1, Xiaoxiang Song1

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 609-631, 2023, DOI:10.32604/cmc.2023.035177 - 06 February 2023

    Abstract The traditional multi-access edge computing (MEC) capacity is overwhelmed by the increasing demand for vehicles, leading to acute degradation in task offloading performance. There is a tremendous number of resource-rich and idle mobile connected vehicles (CVs) in the traffic network, and vehicles are created as opportunistic ad-hoc edge clouds to alleviate the resource limitation of MEC by providing opportunistic computing services. On this basis, a novel scalable system framework is proposed in this paper for computation task offloading in opportunistic CV-assisted MEC. In this framework, opportunistic ad-hoc edge cloud and fixed edge cloud cooperate to… More >

  • Open Access

    ARTICLE

    AI Based Traffic Flow Prediction Model for Connected and Autonomous Electric Vehicles

    P. Thamizhazhagan1,*, M. Sujatha2, S. Umadevi3, K. Priyadarshini4, Velmurugan Subbiah Parvathy5, Irina V. Pustokhina6, Denis A. Pustokhin7

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 3333-3347, 2022, DOI:10.32604/cmc.2022.020197 - 27 September 2021

    Abstract There is a paradigm shift happening in automotive industry towards electric vehicles as environment and sustainability issues gained momentum in the recent years among potential users. Connected and Autonomous Electric Vehicle (CAEV) technologies are fascinating the automakers and inducing them to manufacture connected autonomous vehicles with self-driving features such as autopilot and self-parking. Therefore, Traffic Flow Prediction (TFP) is identified as a major issue in CAEV technologies which needs to be addressed with the help of Deep Learning (DL) techniques. In this view, the current research paper presents an artificial intelligence-based parallel autoencoder for TFP,… More >

  • Open Access

    ARTICLE

    Time-Series Data and Analysis Software of Connected Vehicles

    Jaekyu Lee1,2, Sangyub Lee1, Hyosub Choi1, Hyeonjoong Cho2,*

    CMC-Computers, Materials & Continua, Vol.67, No.3, pp. 2709-2727, 2021, DOI:10.32604/cmc.2021.015174 - 01 March 2021

    Abstract In this study, we developed software for vehicle big data analysis to analyze the time-series data of connected vehicles. We designed two software modules: The first to derive the Pearson correlation coefficients to analyze the collected data and the second to conduct exploratory data analysis of the collected vehicle data. In particular, we analyzed the dangerous driving patterns of motorists based on the safety standards of the Korea Transportation Safety Authority. We also analyzed seasonal fuel efficiency (four seasons) and mileage of vehicles, and identified rapid acceleration, rapid deceleration, sudden stopping (harsh braking), quick starting,… More >

  • Open Access

    ARTICLE

    A Data Download Method from RSUs Using Fog Computing in Connected Vehicles

    Dae-Young Kim1, Seokhoon Kim2,*

    CMC-Computers, Materials & Continua, Vol.59, No.2, pp. 375-387, 2019, DOI:10.32604/cmc.2019.06077

    Abstract Communication is important for providing intelligent services in connected vehicles. Vehicles must be able to communicate with different places and exchange information while driving. For service operation, connected vehicles frequently attempt to download large amounts of data. They can request data downloading to a road side unit (RSU), which provides infrastructure for connected vehicles. The RSU is a data bottleneck in a transportation system because data traffic is concentrated on the RSU. Therefore, it is not appropriate for a connected vehicle to always attempt a high speed download from the RSU. If the mobile network… More >

Displaying 1-10 on page 1 of 7. Per Page