Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    A Deep Learning Approach for Crowd Counting in Highly Congested Scene

    Akbar Khan1, Kushsairy Abdul Kadir1,*, Jawad Ali Shah2, Waleed Albattah3, Muhammad Saeed4, Haidawati Nasir5, Megat Norulazmi Megat Mohamed Noor5, Muhammad Haris Kaka Khel1

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 5825-5844, 2022, DOI:10.32604/cmc.2022.027077 - 28 July 2022

    Abstract With the rapid progress of deep convolutional neural networks, several applications of crowd counting have been proposed and explored in the literature. In congested scene monitoring, a variety of crowd density estimating approaches has been developed. The understanding of highly congested scenes for crowd counting during Muslim gatherings of Hajj and Umrah is a challenging task, as a large number of individuals stand nearby and, it is hard for detection techniques to recognize them, as the crowd can vary from low density to high density. To deal with such highly congested scenes, we have proposed… More >

Displaying 1-10 on page 1 of 1. Per Page