Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    ARTICLE

    Data-Driven Structural Topology Optimization Method Using Conditional Wasserstein Generative Adversarial Networks with Gradient Penalty

    Qingrong Zeng, Xiaochen Liu, Xuefeng Zhu*, Xiangkui Zhang, Ping Hu

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2065-2085, 2024, DOI:10.32604/cmes.2024.052620 - 31 October 2024

    Abstract Traditional topology optimization methods often suffer from the “dimension curse” problem, wherein the computation time increases exponentially with the degrees of freedom in the background grid. Overcoming this challenge, we introduce a real-time topology optimization approach leveraging Conditional Generative Adversarial Networks with Gradient Penalty (CGAN-GP). This innovative method allows for nearly instantaneous prediction of optimized structures. Given a specific boundary condition, the network can produce a unique optimized structure in a one-to-one manner. The process begins by establishing a dataset using simulation data generated through the Solid Isotropic Material with Penalization (SIMP) method. Subsequently, we More >

  • Open Access

    ARTICLE

    Quantifying Uncertainty in Dielectric Solids’ Mechanical Properties Using Isogeometric Analysis and Conditional Generative Adversarial Networks

    Shuai Li1, Xiaodong Zhao1,2,*, Jinghu Zhou1, Xiyue Wang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2587-2611, 2024, DOI:10.32604/cmes.2024.052203 - 08 July 2024

    Abstract Accurate quantification of the uncertainty in the mechanical characteristics of dielectric solids is crucial for advancing their application in high-precision technological domains, necessitating the development of robust computational methods. This paper introduces a Conditional Generation Adversarial Network Isogeometric Analysis (CGAN-IGA) to assess the uncertainty of dielectric solids’ mechanical characteristics. IGA is utilized for the precise computation of electric potentials in dielectric, piezoelectric, and flexoelectric materials, leveraging its advantage of integrating seamlessly with Computer-Aided Design (CAD) models to maintain exact geometrical fidelity. The CGAN method is highly efficient in generating models for piezoelectric and flexoelectric materials, More >

  • Open Access

    ARTICLE

    Conditional Generative Adversarial Network Enabled Localized Stress Recovery of Periodic Composites

    Chengkan Xu1,2,4, Xiaofei Wang3, Yixuan Li2, Guannan Wang2,*, He Zhang2,4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 957-974, 2024, DOI:10.32604/cmes.2024.047327 - 16 April 2024

    Abstract Structural damage in heterogeneous materials typically originates from microstructures where stress concentration occurs. Therefore, evaluating the magnitude and location of localized stress distributions within microstructures under external loading is crucial. Repeating unit cells (RUCs) are commonly used to represent microstructural details and homogenize the effective response of composites. This work develops a machine learning-based micromechanics tool to accurately predict the stress distributions of extracted RUCs. The locally exact homogenization theory efficiently generates the microstructural stresses of RUCs with a wide range of parameters, including volume fraction, fiber/matrix property ratio, fiber shapes, and loading direction. Subsequently, More > Graphic Abstract

    Conditional Generative Adversarial Network Enabled Localized Stress Recovery of Periodic Composites

  • Open Access

    ARTICLE

    Toward Improved Accuracy in Quasi-Static Elastography Using Deep Learning

    Yue Mei1,2,3, Jianwei Deng1,2, Dongmei Zhao1,2, Changjiang Xiao1,2, Tianhang Wang4, Li Dong5, Xuefeng Zhu1,6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 911-935, 2024, DOI:10.32604/cmes.2023.043810 - 30 December 2023

    Abstract Elastography is a non-invasive medical imaging technique to map the spatial variation of elastic properties of soft tissues. The quality of reconstruction results in elastography is highly sensitive to the noise induced by imaging measurements and processing. To address this issue, we propose a deep learning (DL) model based on conditional Generative Adversarial Networks (cGANs) to improve the quality of nonhomogeneous shear modulus reconstruction. To train this model, we generated a synthetic displacement field with finite element simulation under known nonhomogeneous shear modulus distribution. Both the simulated and experimental displacement fields are used to validate More >

  • Open Access

    ARTICLE

    Single Image Desnow Based on Vision Transformer and Conditional Generative Adversarial Network for Internet of Vehicles

    Bingcai Wei, Di Wang, Zhuang Wang, Liye Zhang*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1975-1988, 2023, DOI:10.32604/cmes.2023.027727 - 26 June 2023

    Abstract With the increasing popularity of artificial intelligence applications, machine learning is also playing an increasingly important role in the Internet of Things (IoT) and the Internet of Vehicles (IoV). As an essential part of the IoV, smart transportation relies heavily on information obtained from images. However, inclement weather, such as snowy weather, negatively impacts the process and can hinder the regular operation of imaging equipment and the acquisition of conventional image information. Not only that, but the snow also makes intelligent transportation systems make the wrong judgment of road conditions and the entire system of… More > Graphic Abstract

    Single Image Desnow Based on Vision Transformer and Conditional Generative Adversarial Network for Internet of Vehicles

  • Open Access

    ARTICLE

    Conditional Generative Adversarial Network Approach for Autism Prediction

    K. Chola Raja1,*, S. Kannimuthu2

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 741-755, 2023, DOI:10.32604/csse.2023.025331 - 01 June 2022

    Abstract Autism Spectrum Disorder (ASD) requires a precise diagnosis in order to be managed and rehabilitated. Non-invasive neuroimaging methods are disease markers that can be used to help diagnose ASD. The majority of available techniques in the literature use functional magnetic resonance imaging (fMRI) to detect ASD with a small dataset, resulting in high accuracy but low generality. Traditional supervised machine learning classification algorithms such as support vector machines function well with unstructured and semi structured data such as text, images, and videos, but their performance and robustness are restricted by the size of the accompanying… More >

Displaying 1-10 on page 1 of 6. Per Page