Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (41)
  • Open Access

    ARTICLE

    Predicting the Mechanical Behavior of a Bioinspired Nanocomposite through Machine Learning

    Xingzi Yang1, Wei Gao2, Xiaodu Wang1, Xiaowei Zeng1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1299-1313, 2024, DOI:10.32604/cmes.2024.049371

    Abstract The bioinspired nacre or bone structure represents a remarkable example of tough, strong, lightweight, and multifunctional structures in biological materials that can be an inspiration to design bioinspired high-performance materials. The bioinspired structure consists of hard grains and soft material interfaces. While the material interface has a very low volume percentage, its property has the ability to determine the bulk material response. Machine learning technology nowadays is widely used in material science. A machine learning model was utilized to predict the material response based on the material interface properties in a bioinspired nanocomposite. This model More >

  • Open Access

    ARTICLE

    A Stable Fuzzy-Based Computational Model and Control for Inductions Motors

    Yongqiu Liu1, Shaohui Zhong2,*, Nasreen Kausar3, Chunwei Zhang4,*, Ardashir Mohammadzadeh4, Dragan Pamucar5,6

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 793-812, 2024, DOI:10.32604/cmes.2023.028175

    Abstract In this paper, a stable and adaptive sliding mode control (SMC) method for induction motors is introduced. Determining the parameters of this system has been one of the existing challenges. To solve this challenge, a new self-tuning type-2 fuzzy neural network calculates and updates the control system parameters with a fast mechanism. According to the dynamic changes of the system, in addition to the parameters of the SMC, the parameters of the type-2 fuzzy neural network are also updated online. The conditions for guaranteeing the convergence and stability of the control system are provided. In More >

  • Open Access

    ARTICLE

    Computational Modeling of Reaction-Diffusion COVID-19 Model Having Isolated Compartment

    Muhammad Shoaib Arif1,2,*, Kamaleldin Abodayeh1, Asad Ejaz2

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.2, pp. 1719-1743, 2023, DOI:10.32604/cmes.2022.022235

    Abstract Cases of COVID-19 and its variant omicron are raised all across the world. The most lethal form and effect of COVID-19 are the omicron version, which has been reported in tens of thousands of cases daily in numerous nations. Following WHO (World health organization) records on 30 December 2021, the cases of COVID-19 were found to be maximum for which boarding individuals were found 1,524,266, active, recovered, and discharge were found to be 82,402 and 34,258,778, respectively. While there were 160,989 active cases, 33,614,434 cured cases, 456,386 total deaths, and 605,885,769 total samples tested. So… More >

  • Open Access

    ARTICLE

    Computational Modeling of Intergranular Crack Propagation in an Intermetallic Compound Layer

    Tong An1,2,*, Rui Zhou1,2, Fei Qin1,2,*, Pei Chen1,2, Yanwei Dai1,2, Yanpeng Gong1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.2, pp. 1481-1502, 2023, DOI:10.32604/cmes.2023.022475

    Abstract A micromechanical model is presented to study the initiation and propagation of microcracks of intermetallic compounds (IMCs) in solder joints. The effects of the grain aggregate morphology, the grain boundary defects and the sensitivity of the various cohesive zone parameters in predicting the overall mechanical response are investigated. The overall strength is predominantly determined by the weak grain interfaces; both the grain aggregate morphology and the weak grain interfaces control the crack configuration; the different normal and tangential strengths of grain interfaces result in different intergranular cracking behaviors and play a critical role in determining More >

  • Open Access

    ARTICLE

    Quantitative Evaluation of Mental-Health in Type-2 Diabetes Patients Through Computational Model

    Fawaz Alassery1, Ahmed Alzahrani2, Asif Irshad Khan2, Ashi Khan3,*, Mohd Nadeem4, Md Tarique Jamal Ansari4

    Intelligent Automation & Soft Computing, Vol.32, No.3, pp. 1701-1715, 2022, DOI:10.32604/iasc.2022.023314

    Abstract A large number of people live in diabetes worldwide. Type-2 Diabetes (D2) accounts for 92% of patients with D2 and puts a huge burden on the healthcare industry. This multi-criterion medical research is based on the data collected from the hospitals of Uttar Pradesh, India. In recent times there is a need for a web-based electronic system to determine the impact of mental health in D2 patients. This study will examine the impact assessment in D2 patients. This paper used the integrated methodology of Fuzzy Analytic Hierarchy (FAHP) and Fuzzy Technique for Order Performance by… More >

  • Open Access

    ARTICLE

    Hybrid Computational Modeling for Web Application Security Assessment

    Adil Hussain Seh1, Jehad F. Al-Amri2, Ahmad F. Subahi3, Md Tarique Jamal Ansari1, Rajeev Kumar4,*, Mohammad Ubaidullah Bokhari5, Raees Ahmad Khan1

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 469-489, 2022, DOI:10.32604/cmc.2022.019593

    Abstract Transformation from conventional business management systems to smart digital systems is a recurrent trend in the current era. This has led to digital revolution, and in this context, the hardwired technologies in the software industry play a significant role However, from the beginning, software security remains a serious issue for all levels of stakeholders. Software vulnerabilities lead to intrusions that cause data breaches and result in disclosure of sensitive data, compromising the organizations’ reputation that translates into, financial losses as well. Most of the data breaches are financially motivated, especially in the healthcare sector. The… More >

  • Open Access

    ARTICLE

    Unified Computational Modelling for Healthcare Device Security Assessment

    Shakeel Ahmed*, Abdulaziz Alhumam

    Computer Systems Science and Engineering, Vol.37, No.1, pp. 1-18, 2021, DOI:10.32604/csse.2021.015775

    Abstract This article evaluates the security techniques that are used to maintain the healthcare devices, and proposes a mathematical model to list these in the order of priority and preference. To accomplish the stated objective, the article uses the Fuzzy Analytic Network Process (ANP) integrated with Technical for Order Preference by Similarities to Ideal Solution (TOPSIS) to find the suitable alternatives of the security techniques for securing the healthcare devices from trespassing. The methodology is enlisted to rank the alternatives/ techniques based on their weights’ satisfaction degree. Thereafter, the ranks of the alternatives determine the order More >

  • Open Access

    ARTICLE

    Numerical Simulation of Blood Flow in Aorta with Dilation: A Comparison between Laminar and LES Modeling Methods

    Lijian Xu1, Tianyang Yang2, Lekang Yin3, Ye Kong2, Yuri Vassilevski4,5, Fuyou Liang1,5,6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.124, No.2, pp. 509-526, 2020, DOI:10.32604/cmes.2020.010719

    Abstract Computational modeling methods have been increasingly employed to quantify aortic hemodynamic parameters that are challenging to in vivo measurements but important for the diagnosis/treatment of aortic disease. Although the presence of turbulence-like behaviors of blood flow in normal or diseased aorta has long been confirmed, the majority of existing computational model studies adopted the laminar flow assumption (LFA) in the treatment of sub-grid flow variables. So far, it remains unclear whether LFA would significantly compromise the reliability of hemodynamic simulation. In the present study, we addressed the issue in the context of a specific aortopathy,… More >

  • Open Access

    ABSTRACT

    Mechano-Electric Feedback and Arrhythmogenic Current Generation in A Computational Model of Coupled Myocytes

    Viviane Timmermann1, Kevin Vincent2, Joakim Sundnes1, Andrew D. McCulloch2,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 133-133, 2019, DOI:10.32604/mcb.2019.07311

    Abstract Heterogeneous mechanical dyskinesis has been implicated in arrhythmogenic phenotypes. Strain-induced perturbations to cardiomyocyte electrophysiology (EP) may trigger arrhythmias via a variety of mechano-electric feedback (MEF) mechanisms. While the role of stretch-activated ionic currents (SACs) has been investigated intensively using computational models, experimental studies have shown that mechanical strain can also trigger intra- and inter-cellular calcium waves. To investigate whether the inherent strain dependence of myofilament calcium affinity may promote arrhythmogenic intra- and inter-cellular calcium waves under conditions of pathologic mechanical heterogeneity, we coupled a mathematical model of excitation-contraction coupling (ECC) in rabbit ventricular myocytes to… More >

  • Open Access

    ABSTRACT

    Computational Modeling of Human Bicuspid Pulmonary Valve Dynamic Deformation in Patients with Tetralogy of Fallot

    Caili Li1,§, Christopher Baird2, Jing Yao3, Chun Yang4, Liang Wang5, Han Yu5, Tal Geva6, Dalin Tang5,*,7,§

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 59-59, 2019, DOI:10.32604/mcb.2019.06872

    Abstract Pulmonary valve stenosis (PVS) is one common right ventricular outflow tract obstruction problem in patients with tetralogy of Fallot (TOF). Congenital bicuspid pulmonary valve (BPV) is a condition of valvular stenosis, and the occurrence of congenital BPV is often associated with TOF. Dynamic computational models of normal pulmonary root (PR) with tri-leaflet and PR with BPV in patients with TOF were developed to investigate the effect of geometric structure of BPV on valve stress and strain distributions. The pulmonary root geometry included valvular leaflets, sinuses, interleaflet triangles and annulus. Mechanical properties of pulmonary valve leaflet… More >

Displaying 1-10 on page 1 of 41. Per Page