Javaid Ali1, Armando Ciancio2, Kashif Ali Khan3, Nauman Raza4,5, Haci Mehmet Baskonus6,*, Muhammad Luqman1, Zafar-Ullah Khan7
CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2275-2296, 2024, DOI:10.32604/cmes.2024.046923
- 08 July 2024
Abstract This study proposes a structure-preserving evolutionary framework to find a semi-analytical approximate solution for a nonlinear cervical cancer epidemic (CCE) model. The underlying CCE model lacks a closed-form exact solution. Numerical solutions obtained through traditional finite difference schemes do not ensure the preservation of the model’s necessary properties, such as positivity, boundedness, and feasibility. Therefore, the development of structure-preserving semi-analytical approaches is always necessary. This research introduces an intelligently supervised computational paradigm to solve the underlying CCE model’s physical properties by formulating an equivalent unconstrained optimization problem. Singularity-free safe Padé rational functions approximate the mathematical More >