Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (25)
  • Open Access

    PROCEEDINGS

    From the Hybrid Lattice Boltzmann Model for Compressible Flows to a Unified Finite Volume solver

    Jinhua Lu1,*, Song Zhao1, Pierre Boivin1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.2, pp. 1-2, 2024, DOI:10.32604/icces.2024.011180

    Abstract The hybrid lattice Boltzmann model [1] for compressible flows uses the lattice Boltzmann method (LBM) to simulate the flow field and the finite volume scheme for the energy field. It inherits the good numerical stability and low dissipation [2] of LBM and avoids the complexity of solving all governing equations within the LBM framework. However, it still faces three issues. First, for compressible flows, the equilibrium distribution functions must exactly recover third-order moments, but it cannot be achieved for the simple DmQn (m dimensions and n discrete phase velocities) models involving only neighboring nodes [3],… More >

  • Open Access

    PROCEEDINGS

    Towards High Reynolds Number Flows by a High-Order SPH Method

    Zifei Meng1, Pengnan Sun1,*, Yang Xu1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011674

    Abstract DNS simulations on incompressible flows with high Reynolds number using meshfree methods remain an enduring challenge to be addressed. In the present work, we attempt to use a high-order SPH scheme (TENO-SPH) to make DNS simulations on high Reynolds number flows. To investigate this, several spatial reconstructions are applied under the Riemann-ALE-SPH framework, and their performances are compared. Particularly, the accuracy of SPH is significantly enhanced by WENO and TENO reconstructions. For free surface flows, we implement a Lagrangian TENO-SPH to reproduce these flows at different Reynolds numbers. More importantly, to make DNS simulations, the More >

  • Open Access

    ARTICLE

    HEAT TRANSFER ANALYSIS OF MHD CASSON FLUID FLOW BETWEEN TWO POROUS PLATES WITH DIFFERENT PERMEABILITY

    V.S. Sampath Kumar, N.P. Pai , B. Devaki

    Frontiers in Heat and Mass Transfer, Vol.20, pp. 1-13, 2023, DOI:10.5098/hmt.20.30

    Abstract In the present study, we consider Casson fluid flow between two porous plates with permeability criteria in the presence of heat transfer and magnetic effect. A proper set of similarity transformations simplify the Navier-Stokes equations to non-linear ODEs with boundary conditions. The homotopy perturbation method is an efficient and stable method which is used to get solutions. Further, the results obtained are compared with the solution computed through an effective and efficient finite difference approach. The purpose of this analysis is to study the four different cases arise viz: suction, injection, mixed suction and mixed More >

  • Open Access

    ARTICLE

    Impact of Artificial Compressibility on the Numerical Solution of Incompressible Nanofluid Flow

    Tohid Adibi1, Shams Forruque Ahmed2,*, Seyed Esmail Razavi3, Omid Adibi4, Irfan Anjum Badruddin5, Syed Javed5

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5123-5139, 2023, DOI:10.32604/cmc.2023.034008 - 28 December 2022

    Abstract The numerical solution of compressible flows has become more prevalent than that of incompressible flows. With the help of the artificial compressibility approach, incompressible flows can be solved numerically using the same methods as compressible ones. The artificial compressibility scheme is thus widely used to numerically solve incompressible Navier-Stokes equations. Any numerical method highly depends on its accuracy and speed of convergence. Although the artificial compressibility approach is utilized in several numerical simulations, the effect of the compressibility factor on the accuracy of results and convergence speed has not been investigated for nanofluid flows in… More >

  • Open Access

    ARTICLE

    ANALYSIS OF MHD FLOW AND HEAT TRANSFER OF LAMINAR FLOW BETWEEN POROUS DISKS

    V. S. Sampath Kumara , N. P. Paia,† , B. Devakia

    Frontiers in Heat and Mass Transfer, Vol.16, pp. 1-7, 2021, DOI:10.5098/hmt.16.3

    Abstract A study is carried out for the two dimensional laminar flow of conducting fluid in presence of magnetic field. The governing non-linear equations of motion are transformed in to dimensionaless form. A solution is obtained by homotopy perturbation method and it is valid for moderately large Reynolds numbers for injection at the wall. Also an efficient algorithm based finite difference scheme is developed to solve the reduced coupled ordinary differential equations with necessary boundary conditions. The effects of Reynolds number, the magnetic parameter and the pradantle number on flow velocity and tempratare distribution is analysed More >

  • Open Access

    ARTICLE

    A Staggered Grid Method for Solving Incompressible Flow on Unstructured Meshes

    Huawen Shu, Minghai Xu, Xinyue Duan*, Yongtong Li, Yu Sun, Ruitian Li, Peng Ding

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.2, pp. 509-523, 2020, DOI:10.32604/cmes.2020.08806 - 01 May 2020

    Abstract A finite volume method based unstructured grid is presented to solve the two dimensional viscous and incompressible flow. The method is based on the pressure-correction concept and solved by using a semi-staggered grid technique. The computational procedure can handle cells of arbitrary shapes, although solutions presented in this paper were only involved with triangular and quadrilateral cells. The pressure or pressure-correction value was stored on the vertex of cells. The mass conservation equation was discretized on the dual cells surrounding the vertex of primary cells, while the velocity components and other scale variables were saved More >

  • Open Access

    ARTICLE

    On the Liquid-Vapor Phase-Change Interface Conditions for Numerical Simulation of Violent Separated Flows

    Matthieu Ancellin1, *, Laurent Brosset2, Jean-Michel Ghidaglia1

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.2, pp. 359-381, 2020, DOI:10.32604/fdmp.2020.08642 - 21 April 2020

    Abstract Numerous models have been proposed in the literature to include phase change into numerical simulations of two-phase flows. This review paper presents the modeling options that have been taken in order to obtain a model for violent separated flows with application to sloshing wave impacts. A relaxation model based on linear non-equilibrium thermodynamics has been chosen to compute the rate of phase change. The integration in the system of partial differential equations is done through a non-conservative advection term. For each of these modelling choices, some alternative models from the literature are presented and discussed. More >

  • Open Access

    ARTICLE

    A STUDY OF MAGNETIC EFFECT ON FLOW BETWEEN TWO PLATES WITH SUCTION OR INJECTION WITH SPECIAL REFERENCE TO CASSON FLUID

    V. S. Sampath Kumar, N. P. Pai

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-9, 2019, DOI:10.5098/hmt.12.23

    Abstract The present paper encorporates the effet of magnetic field on the incompressible Casson fluid flow between two parallel infinite rectangular plates approaching towards or away from each other with suction or injection at the porous plates. Using similarity transformations the governing Navier-Stokes equations are reduced to a nonlinear ordinary differential equation. Semi-analytical solution is obtained based on the Homotopy perturbation method. Further, the solution is compared with the classical finite difference method separately. The effect of magnetic field on velocity, skin friction and pressure is analysed on flow between two plates with suction or injection, More >

  • Open Access

    ARTICLE

    MULTICOMPONENT GAS-PARTICLE FLOW AND HEAT/MASS TRANSFER INDUCED BY A LOCALIZED LASER IRRADIATION ON A URETHANE-COATED STAINLESS STEEL SUBSTRATE

    Nazia Afrina, Yijin Maoa, Yuwen Zhanga,*, J. K. Chena, Robin Ritterb, Alan Lampsonb, Jonathan Stohsc

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-8, 2016, DOI:10.5098/hmt.7.7

    Abstract A three-dimensional numerical simulation is conducted for a complex process in a laser-material system, which involves heat and mass transfer in a compressible gaseous phase and chemical reaction during laser irradiation on a urethane paint coated on a stainless steel substrate. A finite volume method (FVM) with a co-located grid mesh that discretizes the entire computational domain is employed to simulate the heating process. The results show that when the top surface of the paint reaches a threshold temperature of 560 K, the polyurethane starts to decompose through chemical reaction. As a result, combustion products CO2, More >

  • Open Access

    ARTICLE

    NON-SIMILAR SOLUTION OF A STEADY COMPRESSIBLE BOUNDARY LAYER FLOW OVER A THIN CYLINDER

    S.V. Subhashinia,* , Nancy Samuelb

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-7, 2016, DOI:10.5098/hmt.7.29

    Abstract The aim of this paper is to present non-similar solutions of a steady laminar compressible boundary layer flow past a long thin circular cylinder including the effects of wall enthalpy and surface mass transfer. The governing equations along with the boundary conditions are first converted into dimensionless form by a non-similar transformation, and then the resulting system of coupled non-linear partial differential equations is solved by an implicit finite difference scheme in combination with the quasi-linearization technique. The increase in the value of power law variation of viscosity causes an increase in the boundary layer More >

Displaying 1-10 on page 1 of 25. Per Page