Empowering Human Decision-Making in AI Models: The Path to Trust and Transparency
Open Access
ARTICLE
CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5123-5139, 2023, DOI:10.32604/cmc.2023.034008
Abstract The numerical solution of compressible flows has become more prevalent than that of incompressible flows. With the help of the artificial compressibility approach, incompressible flows can be solved numerically using the same methods as compressible ones. The artificial compressibility scheme is thus widely used to numerically solve incompressible Navier-Stokes equations. Any numerical method highly depends on its accuracy and speed of convergence. Although the artificial compressibility approach is utilized in several numerical simulations, the effect of the compressibility factor on the accuracy of results and convergence speed has not been investigated for nanofluid flows in previous studies. Therefore, this paper… More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.1, pp. 133-154, 2023, DOI:10.32604/cmes.2022.022649
Abstract In this paper, natural heat convection inside square and equilateral triangular cavities was studied using a meshless method based on collocation local radial basis function (RBF). The nanofluids used were Cu-water or -water mixture with nanoparticle volume fractions range of . A system of continuity, momentum, and energy partial differential equations was used in modeling the flow and temperature behavior of the fluids. Partial derivatives in the governing equations were approximated using the RBF method. The artificial compressibility model was implemented to overcome the pressure velocity coupling problem that occurs in such equations. The main goal of this work was… More >
Graphic Abstract
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.127, No.3, pp. 1101-1117, 2021, DOI:10.32604/cmes.2021.015406
Abstract In this paper, the densely arrayed bonded particle model is proposed for simulation of granular materials with discrete element method (DEM) considering particle crushing. This model can solve the problem of pore calculation after the grains are crushed, and reduce the producing time of specimen. In this work, several one-dimensional compressing simulations are carried out to investigate the effect of particle crushing on mechanical properties of granular materials under a wide range of stress. The results show that the crushing process of granular materials can be divided into four different stages according to er-logσy curves. At the end of the… More >
Open Access
ARTICLE
Molecular & Cellular Biomechanics, Vol.3, No.1, pp. 35-42, 2006, DOI:10.3970/mcb.2006.003.035
Abstract It is common practice in the arterial wall modeling to assume material incompressibility. This assumption is driven by the observation of the global volume preservation of the artery specimens in some mechanical loading experiments. The global volume preservation, however, does not necessarily imply the local volume preservation -- incompressibility. In this work, we suggest to use the arterial ring- cutting experiments for the assessment of the local incompressibility assumption. The idea is to track the local stretches of the marked segments of the arterial ring after the stress-relieving cut. In the particular case of the rabbit thoracic artery, considered in… More >
Open Access
ARTICLE
CMES-Computer Modeling in Engineering & Sciences, Vol.83, No.4, pp. 385-402, 2012, DOI:10.3970/cmes.2012.083.385
Abstract In this paper, we describe an Incompressible Navier-Stokes (INS) sol -ver using mesh less least square based discretisation on arbitrary distribution of points. The method uses modified Artificial Compressibility Method (ACM) with least square based discretisation. The Solver operates on an arbitrary distribution of points and uses a novel least squares based method that replaces the normal equations approach. This method generates the non-symmetric cross-product matrix by suitable selection of sub stencils such that the matrix is diagonally dominant and well conditioned. The INS solver has been validated with results available in literature for standard test cases. More >
Open Access
ARTICLE
CMC-Computers, Materials & Continua, Vol.36, No.1, pp. 1-21, 2013, DOI:10.3970/cmc.2013.036.001
Abstract This paper explores the application of Local Radial Basis Function Collocation Method (LRBFCM) [Šarler and Vertnik (2006)] for solution of Newtonian incompressible 2D fluid flow for a lid driven cavity problem [Ghia, Ghia, and Shin (1982)] in primitive variables. The involved velocity and pressure fields are represented on overlapping five-noded sub-domains through collocation by using Radial Basis Functions (RBF). The required first and second derivatives of the fields are calculated from the respective derivatives of the RBF’s. The momentum equation is solved through explicit time stepping. The method is alternatively structured with multiquadrics and inverse multiquadrics RBF’s. In addition, two… More >