Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (319)
  • Open Access

    ARTICLE

    Recent Developments About IPMCs (Ionic Polymer-Metal) Composites: A Review of Performances for Different Conditions

    Wenqi Zhang1, Yunqing Gu1,*, Jiegang Mou1

    FDMP-Fluid Dynamics & Materials Processing, Vol.14, No.4, pp. 243-258, 2018, DOI:10.32604/fdmp.2018.03836

    Abstract It is of great significance for the production of micro robots and new sensors to develop actuators with “muscle” properties. As a kind of electroactive polymers (EAPs), IPMC (ionic polymer-metal composite) can exhibit significant deformation for very low electrical excitation. These composites, known as the “artificial muscle”, can be regarded as intelligent bionic materials. With regard to the mechanism of deformation of IPMC, a large number of experimental studies have proved that the variety of electrodes and water contents relating to IPMC have great influence on its electro-mechanical and mechanical properties. Recent research results about IPMC were summarized here to… More >

  • Open Access

    ARTICLE

    Production of Carbon Nanotubes-Nickel Composites on Different Graphite Substrates

    Munther Issa K,ah1, Jean-Luc Meunier2

    FDMP-Fluid Dynamics & Materials Processing, Vol.5, No.2, pp. 123-136, 2009, DOI:10.3970/fdmp.2009.005.123

    Abstract Multi walled carbon nanotubes (MWCNTs) were synthesized on different graphite types covered with thin layer of nickel catalyst by catalytic chemical vapour deposition using acetylene as hydrocarbon source. The produced carbon nanotubes were investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM). The shape, quantity and diameter of the MWCNTs are shown to be affected by the type of the graphite substrate, the growth temperature and the hydrocarbon source flow rate. The diameters of the produced MWCNTs were ranged between 43 and 80 nm for pyrolytic (PYROID) and polycrystalline (AXF-5Q) graphite, respectively when the… More >

  • Open Access

    ARTICLE

    Normal Stresses in an Ifnitite Elastic Body with a Locally Curved and Hollow Nanofiber

    K. S. Alan1

    CMC-Computers, Materials & Continua, Vol.44, No.1, pp. 1-21, 2014, DOI:10.3970/cmc.2014.044.001

    Abstract In the framework of the piecewise homogeneous body model with the use of the three-dimensional geometrically nonlinear exact equations of the theory of elasticity, the method developed for the determination of the stress distribution in the nanocomposites with unidirectional locally curved and hollow nanofibers is used to investigate the normal stresses acting along the nanofibers. Furthermore, it is assumed that the body is loaded at infinity by uniformly distributed normal forces which act along the nanofibers and the crosssection of the nanofibers and normal to its axial line, is a circle of constant radius along the entire nanofiber length. For… More >

  • Open Access

    ARTICLE

    Thermal Cycling Degradation of T650 Carbon Fiber/PT-30 Cyanate Ester Composite

    Huanchun Chen1, Kunigal Shivakumar1

    CMC-Computers, Materials & Continua, Vol.8, No.1, pp. 33-42, 2008, DOI:10.3970/cmc.2008.008.033

    Abstract Thermal cycling degradation effect on tensile and flexural properties of Cytec T650 carbon/Lonza Primaset PT-30 cyanate ester composite rods used for gas turbine engine brush seals was evaluated. The composite rods were thermal cycled in air from room temperature to 315°C for 100, 200, 400, 600 and 800 cycles. Each thermal cycle is a one hour period with 28 minutes hold at peak temperature and a high heating/cooling rate of 73°C/min. The composite withstood the first 100 thermal cycles with less than 10% property change. After that, tensile strength and fracture strain as well as flexural modulus were gradually reduced.… More >

  • Open Access

    ARTICLE

    A New Constitutive Model for Ferromagnetic Shape Memory Alloy Particulate Composites

    H.T. Li1,2,3, Z.Y. Guo1,2, J. Wen1,2, H.G. Xiang1,2, Y.X. Zhang1,2

    CMC-Computers, Materials & Continua, Vol.48, No.2, pp. 91-102, 2015, DOI:10.3970/cmc.2015.048.091

    Abstract Ferromagnetic shape memory alloy particulate composites, which combine the advantages of large magnetic field induced deformation in ferromagnetic shape memory alloys (FSMAs) with high ductility in matrix, can be used for sensor and actuator applications. In this paper, a new constitutive model was proposed to predict the magneto-mechanical behaviors of FSMA particulate composites based on the description for FSMAs, incorporating Eshelby’s equivalent inclusion theory. The influencing factors, such as volume fraction of particles and elastic modulus, were analyzed. The magnetic field induced strain and other mechanical properties under different magnetic field intensity were also investigated. More >

  • Open Access

    ARTICLE

    Development and Characterization of the Midrib of Coconut Palm Leaf Reinforced Polyester Composite

    Neeraj Dubey1, Geeta Agnihotri1

    CMC-Computers, Materials & Continua, Vol.45, No.1, pp. 39-56, 2015, DOI:10.3970/cmc.2015.045.039

    Abstract In this paper, midrib of coconut palm leaves (MCL) was investigated for the purpose of development of natural fiber reinforced polymer matrix composites. A new natural fiber composite as MCL/polyester is developed by the hand lay-up method, and the material and mechanical properties of the fiber, matrix and composite materials were evaluated. The effect of fiber content on the tensile, flexural, impact, compressive strength and heat distortion temperature (HDT) was investigated. It was found that the MCL fiber had the maximum tensile strength, tensile modulus flexural strength, flexural modulus and Izod impact strength of 177.5MPa, 14.85GPa, 316.04MPa and 23.54GPa, 8.23KJ/m2More >

  • Open Access

    ARTICLE

    Mechanical Analysis of 3D Composite Materials by Hybrid Boundary Node Method

    Yu Miao1, Zhe Chen1, Qiao Wang1,2, Hongping Zhu1

    CMC-Computers, Materials & Continua, Vol.43, No.1, pp. 49-74, 2014, DOI:10.3970/cmc.2014.043.049

    Abstract In this paper, an improved multi-domain model based on the hybrid boundary node method (Hybrid BNM) is proposed for mechanical analysis of 3D composites. The Hybrid BNM is a boundary type meshless method which based on the modified variational principle and the Moving Least Squares (MLS) approximation. The improved multi-domain model can reduce the total degrees of freedom (DOFs) compared with the conventional multi-domain solver. It is very suitable for the inclusion-based composites, especially for the composites when the inclusions are solid and totally embedded in the matrix domain. Numerical examples are presented to verify the improved multi-domain model and… More >

  • Open Access

    ARTICLE

    Design, Fabrication, Characterization and Simulation of PIP-SiC/SiC Composites

    S. Zhao1, Zichun Yang1,2, X. G. Zhou3, X. Z. Ling4, L. S. Mora5, D. Khoshkhou6, J. Marrow5

    CMC-Computers, Materials & Continua, Vol.42, No.2, pp. 103-124, 2014, DOI:10.3970/cmc.2014.042.103

    Abstract Continuous SiC fiber reinforced SiC matrix composites (SiC/SiC) have been studied and developed for high temperature and fusion applications. Polymer impregnation and pyrolysis (PIP) is a conventional technique for fabricating SiC/SiC composites. In this research, KD-1 SiC fibers were employed as reinforcements, a series of coatings such as pyrocarbon (PyC), SiC and carbon nanotubes (CNTs) were synthesized as interphases, PCS and LPVCS were used as precursors and SiC/SiC composites were prepared via the PIP method. The mechanical properties of the SiC/SiC composites were characterized. Relationship between the interphase shear strength and the fracture toughness of the composites was established. X-ray… More >

  • Open Access

    ARTICLE

    Investigation of the Embedded Element Technique for ModellingWavy CNT Composites

    Anna Y. Matveeva1, Helmut J. Böhm2, Grygoriy Kravchenko2, Ferrie W. J. van Hattum1

    CMC-Computers, Materials & Continua, Vol.42, No.1, pp. 1-23, 2014, DOI:10.3970/cmc.2014.042.001

    Abstract This paper presents a comparison of different finite element approaches to modelling polymers reinforced with wavy, hollow fibres with the aim of predicting the effective elastic stiffness tensors of the composites. The waviness of the tubes is described by sinusoidal models with different amplitude-to-wavelength parameters. These volume elements are discretized by structured volume meshes onto which fibres in the form of independently meshed beam, shell or volume elements are superimposed. An embedded element technique is used to link the two sets of meshes. Reference solutions are obtained from conventional three-dimensional volume models of the same phase arrangements. Periodicity boundary conditions… More >

  • Open Access

    ARTICLE

    A Numerical Modeling of Failure Mechanism for SiC Particle Reinforced Metal-Metrix Composites

    Qiubao Ouyang1, Di Zhang1,2, Xinhai Zhu3, Zhidong Han3

    CMC-Computers, Materials & Continua, Vol.41, No.1, pp. 37-54, 2014, DOI:10.3970/cmc.2014.041.037

    Abstract The present work is to investigate the failure mechanisms in the deformation of silicon carbide (SiC) particle reinforced aluminum Metal Matrix Composites (MMCs). To better deal with crack growth, a new numerical approach: the MLPG-Eshelby Method is used. This approach is based on the meshless local weak-forms of the Noether/Eshelby Energy Conservation Laws and it achieves a faster convergent rate and is of good accuracy. In addition, it is much easier for this method to allow material to separate in the material fracture processes, comparing to the conventional popular FEM based method. Based on a statistical method and physical observations,… More >

Displaying 291-300 on page 30 of 319. Per Page