Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Alkali and Plasma-Treated Guadua angustifolia Bamboo Fibers: A Study on Reinforcement Potential for Polymeric Matrices

    Patricia Luna1,*, Juan Lizarazo-Marriaga1, Alvaro Mariño2

    Journal of Renewable Materials, Vol.12, No.8, pp. 1399-1416, 2024, DOI:10.32604/jrm.2024.052669 - 06 September 2024

    Abstract This study focuses on treating Guadua angustifolia bamboo fibers to enhance their properties for reinforcement applications in composite materials. Chemical (alkali) and physical (dry etching plasma) treatments were used separately to augment compatibility of Guadua angustifolia fibers with various composite matrices. The influence of these treatments on the fibers’ performance, chemical composition, and surface morphology were analyzed. Statistical analysis indicated that alkali treatments reduced the tensile modulus of elasticity and strength of fibers by up to 40% and 20%, respectively, whereas plasma treatments maintain the fibers’ mechanical performance. FTIR spectroscopy revealed significant alterations in chemical composition due More > Graphic Abstract

    Alkali and Plasma-Treated <i>Guadua angustifolia</i> Bamboo Fibers: A Study on Reinforcement Potential for Polymeric Matrices

  • Open Access

    ARTICLE

    Experimental Study on the Influence Mechanism of Carbon Fiber/Epoxy Composite Reinforcement and Matrix on Its Fire Performance

    Lei Zhang1, Haiyan Wang1,*, Junpeng Zhang1, Zhi Wang2, Zuohui Xu1, Xinyu Gao1

    Journal of Renewable Materials, Vol.8, No.3, pp. 219-237, 2020, DOI:10.32604/jrm.2020.09096 - 01 March 2020

    Abstract The effects of the number of layers, the arrangement of carbon fiber (CF) tow and the epoxy resin (ER) matrix on the fire performance of carbon fiber/epoxy composites (CFEC) were studied by a variety of experimental methods. The results show that the number of layers of CF tow has influence on the combustion characteristics and fire propagation of the composites. The arrangement of CF tow has influence on flame propagation rate and high temperature mechanicalproperties. The mechanism of the influence of the number of layers of CF tow on the composite is mainly due to… More >

Displaying 1-10 on page 1 of 2. Per Page