Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (20)
  • Open Access

    ARTICLE

    Numerical Investigation on Vibration Performance of Flexible Plates Actuated by Pneumatic Artificial Muscle

    Zhimin Zhao1,2, Jie Yan3, Shangbin Wang1,2, Yuanhao Tie4, Ning Feng1,2,5,*

    Sound & Vibration, Vol.56, No.4, pp. 307-317, 2022, DOI:10.32604/sv.2022.028797 - 03 March 2023

    Abstract This paper theoretically introduced the feasibility of changing the vibration characteristics of flexible plates by using bio-inspired, extremely light, and powerful Pneumatic Artificial Muscle (PAM) actuators. Many structural plates or shells are typically flexible and show high vibration sensitivity. For this reason, this paper provides a way to achieve active vibration control for suppressing the oscillations of these structures to meet strict stability, safety, and comfort requirements. The dynamic behaviors of the designed plates are modeled by using the finite element (FE) method. As is known, the output force vs. contraction curve of PAM is nonlinear… More >

  • Open Access

    ARTICLE

    Agglomeration Effects on Static Stability Analysis of Multi-Scale Hybrid Nanocomposite Plates

    Farzad Ebrahimi1, Ali Dabbagh2, Abbas Rastgoo2, Timon Rabczuk3, *

    CMC-Computers, Materials & Continua, Vol.63, No.1, pp. 41-64, 2020, DOI:10.32604/cmc.2020.07947 - 30 March 2020

    Abstract We propose a multiscale approach to study the influence of carbon nanotubes’ agglomeration on the stability of hybrid nanocomposite plates. The hybrid nanocomposite consists of both macro- and nano-scale reinforcing fibers dispersed in a polymer matrix. The equivalent material properties are calculated by coupling the Eshelby-Mori-Tanaka model with the rule of mixture accounting for effects of CNTs inside the generated clusters. Furthermore, an energy based approach is implemented to obtain the governing equations of the problem utilizing a refined higher-order plate theorem. Subsequently, the derived equations are solved by Galerkin’s analytical method to predict the More >

  • Open Access

    ARTICLE

    Analysis of High-Cr Cast Iron/Low Carbon Steel Wear-resistant Laminated Composite Plate Prepared by Hot-rolled Symmetrical Billet

    Yanwei Li1, Yugui Li1, Peisheng Han1, Shun Wang1, Zhengyi Jiang1,2, Xiaogang Wang1, *

    CMES-Computer Modeling in Engineering & Sciences, Vol.117, No.1, pp. 109-123, 2018, DOI:10.31614/cmes.2018.04077

    Abstract This study developed a new technology for preparing high-chromium cast iron (HCCI)/low-carbon steel (LCS) wear-resistant composite plates by hot rolling at a 1050 °C and a rolling speed of 0.2 m/s. The effects of different rolling reductions (30%, 45%, and 60%) on the microstructure (interface and HCCI layer) and mechanical properties (bonding strength, hardness, and wear resistance) of the composite plate were studied. SEM images showed that when the reduction was increased, no impurities and interlayers were found between the microscopic interfaces after hot rolling, and the bonding interface exhibited a wave-like shape. EDS analysis… More >

  • Open Access

    ARTICLE

    Neural Network-Based Second Order Reliability Method (NNBSORM) for Laminated Composite Plates in Free Vibration

    Mena E. Tawfik1, 2, Peter L. Bishay3, *, Edward A. Sadek1

    CMES-Computer Modeling in Engineering & Sciences, Vol.115, No.1, pp. 105-129, 2018, DOI:10.3970/cmes.2018.115.105

    Abstract Monte Carlo Simulations (MCS), commonly used for reliability analysis, require a large amount of data points to obtain acceptable accuracy, even if the Subset Simulation with Importance Sampling (SS/IS) methods are used. The Second Order Reliability Method (SORM) has proved to be an excellent rapid tool in the stochastic analysis of laminated composite structures, when compared to the slower MCS techniques. However, SORM requires differentiating the performance function with respect to each of the random variables involved in the simulation. The most suitable approach to do this is to use a symbolic solver, which renders… More >

  • Open Access

    ARTICLE

    Elastodynamic Analysis of Thick Multilayer Composite Plates by The Boundary Element Method

    J. Useche1, H. Alvarez1

    CMES-Computer Modeling in Engineering & Sciences, Vol.107, No.4, pp. 277-296, 2015, DOI:10.3970/cmes.2015.107.277

    Abstract Dynamic stress analysis of laminated composites plates represents a relevant task in designing of aerospace, shipbuilding and automotive components where impulsive loads can lead to sudden structural failure. The mechanical complexity inherent to these kind of components makes the numerical modeling an essential engineering analysis tool. This work deals with dynamic analysis of stresses and deformations in laminated composites thick plates using a new Boundary Element Method formulation. Composite laminated plates were modeled using the Reissner’s plate theory. We propose a direct time-domain formulation based on elastostatic fundamental solution for symmetrical laminated thick plates. Formulation More >

  • Open Access

    ARTICLE

    Fractional Order Derivative Model of Viscoelastic layer for Active Damping of Geometrically Nonlinear Vibrations of Smart Composite Plates

    Priyankar Datta1, Manas C. Ray1

    CMC-Computers, Materials & Continua, Vol.49-50, No.1, pp. 47-80, 2015, DOI:10.3970/cmc.2015.049.047

    Abstract This paper deals with the implementation of the one dimensional form of the fractional order derivative constitutive relation for three dimensional analysis of active constrained layer damping (ACLD) of geometrically nonlinear laminated composite plates. The constraining layer of the ACLD treatment is composed of the vertically/obliquely reinforced 1–3 piezoelectric composites (PZCs). The von Kármán type nonlinear strain displacement relations are used to account for the geometric nonlinearity of the plates. A nonlinear smart finite element model (FEM) has been developed. Thin laminated substrate composite plates with various boundary conditions and stacking sequences are analyzed to More >

  • Open Access

    ARTICLE

    Matrix Crack Detection in Composite Plate with Spatially Random Material Properties using Fractal Dimension

    K. Umesh1, R. Ganguli1

    CMC-Computers, Materials & Continua, Vol.41, No.3, pp. 215-240, 2014, DOI:10.3970/cmc.2014.041.215

    Abstract Fractal dimension based damage detection method is investigated for a composite plate with random material properties. Composite material shows spatially varying random material properties because of complex manufacturing processes. Matrix cracks are considered as damage in the composite plate. Such cracks are often seen as the initial damage mechanism in composites under fatigue loading and also occur due to low velocity impact. Static deflection of the cantilevered composite plate with uniform loading is calculated using the finite element method. Damage detection is carried out based on sliding window fractal dimension operator using the static deflection. More >

  • Open Access

    ARTICLE

    Dynamic Instability of Rectangular Composite Plates under Parametric Excitation

    Meng-Kao Yeh1, Chia-Shien Liu2, Chien-Chang Chen3

    CMC-Computers, Materials & Continua, Vol.39, No.1, pp. 3-20, 2014, DOI:10.3970/cmc.2014.039.003

    Abstract The dynamic instability of rectangular graphite/epoxy composite plates under parametric excitation was investigated analytically and experimentally. In analysis, the dynamic system of the composite plate, obtained based on the assumedmodes method, is a general form of Mathieu’s equation, including parametrically excited terms. The instability regions of the system, each separated by two transition curves, were found to be functions of the modal parameters of the composite plate and the position and the excited amplitude of the electromagnetic device on the composite plates. The fiber orientation, the aspect ratio and the layer numbers of the composite… More >

  • Open Access

    ARTICLE

    3D FEM Analysis of the Buckling Delamination of a Rectangular Viscoelastic Composite Plate with an Embedded Rectangular Crack Under Two-Axial Compression

    S. D. Akbarov1, N. Yahnioglu2, E. E. Karatas2

    CMC-Computers, Materials & Continua, Vol.30, No.1, pp. 1-18, 2012, DOI:10.3970/cmc.2012.030.001

    Abstract In Akbarov, Yahnioglu and Karatas (2010) a buckling delamination problem for a rectangular viscoelastic composite plate with a band and edge cracks was investigated under uniaxial compression of the plate. In the present study this investigation is developed for the case where the mentioned rectangular plate contains an embedded rectangular crack and in addition it is assumed that the plate is subjected to two-axial compression.
    It is supposed that all end surfaces of the considered plate are simply supported and that these ends are subjected to uniformly distributed normal compressive forces with intensity p1 and p3More >

  • Open Access

    ARTICLE

    3D Analysis of the Forced Vibration of a Prestressed Rectangular Composite Plate With Two Neighboring Cylindrical Cavities

    S.D. Akbarov1,2, N. Yahnioglu3, U. Babuscu Yesil3

    CMC-Computers, Materials & Continua, Vol.28, No.2, pp. 147-164, 2012, DOI:10.3970/cmc.2012.028.147

    Abstract This paper presents an analysis of the forced vibration of an initially stressed rectangular composite plate containing two neighboring cylindrical cavities. The initial stresses are caused by stretching or compressing of the plate with uniformly distributed normal static forces acting on the two opposite end-planes which are parallel to the central axes of the aforementioned cylindrical cavities. The influence of the initial stresses on the stress concentration around the cavities caused by the additional uniformly distributed time harmonic forces acting on the upper face plane of the plate are given. The considered problem is formulated More >

Displaying 1-10 on page 1 of 20. Per Page