Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (905)
  • Open Access

    ARTICLE

    3D Bio-Plotted Composite Scaffold Made of Collagen Treated Hydroxyapatite-Tricalciumphosphate for Rabbit Tibia Bone Regeneration

    Pranav S. Sapkal1*, Abhaykumar M. Kuthe1, Divya Ganapathy2, Shantanu C. Mathankar3, Sudhanshu Kuthe4

    Molecular & Cellular Biomechanics, Vol.13, No.2, pp. 115-136, 2016, DOI:10.3970/mcb.2016.013.131

    Abstract Biphasic calcium phosphate scaffolds with 20/80 HA/TCP ratio were fabricated using the 3D-Bioplotting system to heal critical size defects in rabbit tibia bone. Four different architectures were printed in a layer by layer fashion with lay down patterns viz. (a) 0°– 90°, (b) 0°– 45°– 90°– 135°, (c) 0°–108°– 216° and (d) 0°– 60°– 120°. After high-temperature sintering scaffolds were coated with collagen and were further characterized by (FTIR) Fourier Transform Infrared Spectroscopy, (SEM) Scanning Electron Microscopy, (XRD) X-Ray diffraction, Porosity analysis and Mechanical testing. Scaffold samples were tested for its ability to induce cytotoxicity… More >

  • Open Access

    ARTICLE

    Simple Efficient Smart Finite Elements for the Analysis of Smart Composite Beams

    M. C. Ray1, L. Dong2, S. N. Atluri3

    CMES-Computer Modeling in Engineering & Sciences, Vol.111, No.5, pp. 437-471, 2016, DOI:10.3970/cmes.2016.111.437

    Abstract This paper is concerned with the development of new simple 4-noded locking-alleviated smart finite elements for modeling the smart composite beams. The exact solutions for the static responses of the overall smart composite beams are also derived for authenticating the new smart finite elements. The overall smart composite beam is composed of a laminated substrate conventional composite beam, and a piezoelectric layer attached at the top surface of the substrate beam. The piezoelectric layer acts as the actuator layer of the smart beam. Alternate finite element models of the beams, based on an "equivalent single… More >

  • Open Access

    ARTICLE

    The Numerical Accuracy Analysis of Asymptotic Homogenization Method and Multiscale Finite Element Method for Periodic Composite Materials

    Hao Dong1, Yufeng Nie1,2, Zihao Yang1, Yang Zhang1, Yatao Wu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.111, No.5, pp. 395-419, 2016, DOI:10.3970/cmes.2016.111.395

    Abstract In this paper, we discuss the numerical accuracy of asymptotic homogenization method (AHM) and multiscale finite element method (MsFEM) for periodic composite materials. Through numerical calculation of the model problems for four kinds of typical periodic composite materials, the main factors to determine the accuracy of first-order AHM and second-order AHM are found, and the physical interpretation of these factors is given. Furthermore, the way to recover multiscale solutions of first-order AHM and MsFEM is theoretically analyzed, and it is found that first-order AHM and MsFEM provide similar multiscale solutions under some assumptions. Finally, numerical More >

  • Open Access

    ARTICLE

    A systematic review of expanded prostate cancer index composite (EPIC) quality of life after surgery or radiation treatment

    Tsz Kin Lee1, Rodney Henry Breau2, Ranjeeta Mallick3, Libni Eapen4

    Canadian Journal of Urology, Vol.22, No.1, pp. 7599-7606, 2015

    Abstract Introduction: The Expanded Prostate Cancer Index Composite (EPIC) is a validated and widely adopted instrument that measures patient quality of life. This study aims to describe and compare patient quality of life in the bowel, urinary, and sexual domains across different prostate cancer treatments.
    Materials and methods: A systematic review of English articles published prior to 2012 was conducted. Peer reviewed articles reporting longitudinal EPIC data in a statistically analyzable form with clearly defined time points were included. Articles were assessed by content experts to ensure optimal treatment quality.
    Screening of studies and extraction of data… More >

  • Open Access

    ARTICLE

    NUMERICAL SIMULATION OF METAL-PLASTIC COMPOSITE HEAT RADIATOR WITH HEMISPHERICAL MICROSTRUCTURE ARRAY

    Hui Jianga,b, Daming Wua,b,c, Jian Zhuanga,b,*, Ying Liua,b,c, Changqing Huanga,b

    Frontiers in Heat and Mass Transfer, Vol.6, pp. 1-6, 2015, DOI:10.5098/hmt.6.14

    Abstract A new type of metal-plastic composite heat radiator with hemispherical microstructure array was proposed in this paper. The influence of the geometrical parameters of the microstructure array, including size of the hemisphere, configuration of hemisphere, tilt angle of the radiator, thermal conductivity and radiation emissivity of the plastic, on the process of heat transfer under natural convection were numerically simulated. It was concluded that the metal-plastic composite heat radiator with hemispherical microstructure array had comparable heat transfer behaviors with those of metal heat radiator. So it is possible to replace metal heat radiator by such More >

  • Open Access

    REVIEW

    Self-assembly Mechanisms in Plant Cell Wall Components

    Yogesh K. Murugesan1, Damiano Pasini2, Alejandro D. Rey1,*

    Journal of Renewable Materials, Vol.3, No.1, pp. 56-72, 2015, DOI:10.7569/JRM.2014.634124

    Abstract This review on self-assembly in biological fi brous composites presents theory and simulation to elucidate the principles and mechanisms that govern the thermodynamics, material science, and rheology of biological anisotropic soft matter that are involved in the growth/self-assembly/material processing of these materials. Plant cell wall, a multi-layered biological fi brous composite, is presented as a model biological system to investigate self-assembly mechanisms in nature’s material synthesis. In order to demonstrate the universality of the presented models and the mechanisms investigated, references to other biological/ biomimetic systems are made when applicable. The integration of soft matter More >

  • Open Access

    ARTICLE

    Using CO2 -Based Polymer Polypropylene Carbonate to Enhance the Interactions in Poly(lactic acid)/Wood Fiber Biocomposites

    Xiaoqing Zhang*, Simon Schmidtφ, Nick Rigopoulos, Januar Gotama, Eustathios Petinakis

    Journal of Renewable Materials, Vol.3, No.2, pp. 91-100, 2015, DOI:10.7569/JRM.2014.634135

    Abstract The behavior of a biodegradable CO2 -based polymer polypropylene carbonate (PPC) as polymer matrix of wood fi ber (WF) composites was examined and compared with that of using poly(lactic acid) (PLA) as the matrix. The PPC/WF composites displayed poor mechanical properties as compared to PLA/WF composites because PPC is an amorphous polymer with low Tg and poor thermal stability. However, when PPC was used in conjunction with PLA in WF composites, the mechanical strength and modulus of the composites could match or even exceed the level of PLA/WF composites. The strong intermolecular interactions between PPC and More >

  • Open Access

    ARTICLE

    Can We Build with Plants? Cabin Construction Using Green Composites

    John C. Hoiby1, Anil N. Netravali2,*

    Journal of Renewable Materials, Vol.3, No.3, pp. 244-258, 2015, DOI:10.7569/JRM.2015.634110

    Abstract This article discusses the construction (virtual model) of a fully green cabin using two types of green composites: those that use natural plant-based fibers with soy protein-based resin which have mechanical properties comparable to wood and wood products, and those that use liquid crystalline cellulose fibers with soy proteinbased resin which have properties comparable to high strength steel. Green composites with moderate strength were used to create molded walls and advanced green composites were used to create the load-bearing framework of the cabin. Construction with molded composites and prefabricated framework can greatly simplify traditional wood More >

  • Open Access

    ARTICLE

    Long-Term Creep Behavior of Flax/Vinyl Ester Composites Using Time-Temperature Superposition Principle

    Ali Amiri, Nassibeh Hosseini, Chad A. Ulven*

    Journal of Renewable Materials, Vol.3, No.3, pp. 224-233, 2015, DOI:10.7569/JRM.2015.634111

    Abstract Natural fibers have great potential to be used as reinforcement in composite materials. Cellulose, being a critical constituent of natural fibers, provides unquestionable advantages over synthetically produced fibers. Increasing demand for use of bio-based composites in different engineering and structural applications requires proper test methods and models for predicting their long-term behavior. In the present work, the time-temperature superposition principle was successfully applied to characterize creep behavior of flax/vinyl ester composites. The creep compliance vs time curves were determined and shifted along the logarithmic time axis to generate a master compliance curve. The time-temperature superposition More >

  • Open Access

    ARTICLE

    Application of Fiber Undulation Model to Predict Oriented Strand Composite Elastic Properties

    Vikram Yadama*, Michael P. Wolcott

    Journal of Renewable Materials, Vol.3, No.3, pp. 216-223, 2015, DOI:10.7569/JRM.2015.634103

    Abstract The effects of strand undulation angles in wood-strand composites have often been ignored due to the virtual impossibility of experimental determination of their effects on composite material properties, and the diffi culty in modeling localized deviations in angle along the path of a strand. The fi ber undulation model (FUM), that has been previously verifi ed, was applied in this study to predict the elastic constants of laboratory-manufactured oriented strand panels. A stochastic approach was incorporated where a series rule of mixtures with probability density functions of angle distributions was utilized in the model to More >

Displaying 601-610 on page 61 of 905. Per Page