Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    SNELM: SqueezeNet-Guided ELM for COVID-19 Recognition

    Yudong Zhang1, Muhammad Attique Khan2, Ziquan Zhu1, Shuihua Wang1,*

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 13-26, 2023, DOI:10.32604/csse.2023.034172 - 20 January 2023

    Abstract (Aim) The COVID-19 has caused 6.26 million deaths and 522.06 million confirmed cases till 17/May/2022. Chest computed tomography is a precise way to help clinicians diagnose COVID-19 patients. (Method) Two datasets are chosen for this study. The multiple-way data augmentation, including speckle noise, random translation, scaling, salt-and-pepper noise, vertical shear, Gamma correction, rotation, Gaussian noise, and horizontal shear, is harnessed to increase the size of the training set. Then, the SqueezeNet (SN) with complex bypass is used to generate SN features. Finally, the extreme learning machine (ELM) is used to serve as the classifier due… More >

Displaying 1-10 on page 1 of 1. Per Page