Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (320)
  • Open Access

    REVIEW

    A Comprehensive Survey on Joint Resource Allocation Strategies in Federated Edge Learning

    Jingbo Zhang1, Qiong Wu1,*, Pingyi Fan2, Qiang Fan3

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 1953-1998, 2024, DOI:10.32604/cmc.2024.057006 - 18 November 2024

    Abstract Federated Edge Learning (FEL), an emerging distributed Machine Learning (ML) paradigm, enables model training in a distributed environment while ensuring user privacy by using physical separation for each user’s data. However, with the development of complex application scenarios such as the Internet of Things (IoT) and Smart Earth, the conventional resource allocation schemes can no longer effectively support these growing computational and communication demands. Therefore, joint resource optimization may be the key solution to the scaling problem. This paper simultaneously addresses the multifaceted challenges of computation and communication, with the growing multiple resource demands. We… More >

  • Open Access

    ARTICLE

    Secure Transmission Scheme for Blocks in Blockchain-Based Unmanned Aerial Vehicle Communication Systems

    Ting Chen1, Shuna Jiang2, Xin Fan3,*, Jianchuan Xia2, Xiujuan Zhang2, Chuanwen Luo3, Yi Hong3

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2195-2217, 2024, DOI:10.32604/cmc.2024.056960 - 18 November 2024

    Abstract In blockchain-based unmanned aerial vehicle (UAV) communication systems, the length of a block affects the performance of the blockchain. The transmission performance of blocks in the form of finite character segments is also affected by the block length. Therefore, it is crucial to balance the transmission performance and blockchain performance of blockchain communication systems, especially in wireless environments involving UAVs. This paper investigates a secure transmission scheme for blocks in blockchain-based UAV communication systems to prevent the information contained in blocks from being completely eavesdropped during transmission. In our scheme, using a friendly jamming UAV… More >

  • Open Access

    ARTICLE

    Improved IChOA-Based Reinforcement Learning for Secrecy Rate Optimization in Smart Grid Communications

    Mehrdad Shoeibi1, Mohammad Mehdi Sharifi Nevisi2, Sarvenaz Sadat Khatami3, Diego Martín2,*, Sepehr Soltani4, Sina Aghakhani5

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2819-2843, 2024, DOI:10.32604/cmc.2024.056823 - 18 November 2024

    Abstract In the evolving landscape of the smart grid (SG), the integration of non-organic multiple access (NOMA) technology has emerged as a pivotal strategy for enhancing spectral efficiency and energy management. However, the open nature of wireless channels in SG raises significant concerns regarding the confidentiality of critical control messages, especially when broadcasted from a neighborhood gateway (NG) to smart meters (SMs). This paper introduces a novel approach based on reinforcement learning (RL) to fortify the performance of secrecy. Motivated by the need for efficient and effective training of the fully connected layers in the RL… More >

  • Open Access

    ARTICLE

    Performance Analysis of Curved Track G2T-FSO (Ground-to-Train Free Space Optical) Model under Various Weather Conditions

    Mohammed A. Alhartomi1,*, Mohammad F. L. Abdullah2, Wafi A. B. Mabrouk2, Mohammed S. M. Gismalla3, Ahmed Alzahmi1, Saeed Alzahrani1, Mohammad R. Altimania1, Mohammed S. Alsawat4

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2087-2105, 2024, DOI:10.32604/cmes.2024.055679 - 31 October 2024

    Abstract The demand for broadband data services on high-speed trains is rapidly growing as more people commute between their homes and workplaces. However, current radio frequency (RF) technology cannot adequately meet this demand. In order to address the bandwidth constraint, a technique known as free space optics (FSO) has been proposed. This paper presents a mathematical derivation and formulation of curve track G2T-FSO (Ground-to-train Free Space Optical) model, where the track radius characteristics is 2667 m, divergence angle track is 1.5° for train velocity at V = 250 km/h. Multiple transmitter configurations are proposed to maximize More >

  • Open Access

    ARTICLE

    Graph Attention Residual Network Based Routing and Fault-Tolerant Scheduling Mechanism for Data Flow in Power Communication Network

    Zhihong Lin1, Zeng Zeng2, Yituan Yu2, Yinlin Ren1, Xuesong Qiu1,*, Jinqian Chen1

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1641-1665, 2024, DOI:10.32604/cmc.2024.055802 - 15 October 2024

    Abstract For permanent faults (PF) in the power communication network (PCN), such as link interruptions, the time-sensitive networking (TSN) relied on by PCN, typically employs spatial redundancy fault-tolerance methods to keep service stability and reliability, which often limits TSN scheduling performance in fault-free ideal states. So this paper proposes a graph attention residual network-based routing and fault-tolerant scheduling mechanism (GRFS) for data flow in PCN, which specifically includes a communication system architecture for integrated terminals based on a cyclic queuing and forwarding (CQF) model and fault recovery method, which reduces the impact of faults by simplified… More >

  • Open Access

    REVIEW

    Digital Image Steganographer Identification: A Comprehensive Survey

    Qianqian Zhang1,2,3, Yi Zhang1,2, Yuanyuan Ma3, Yanmei Liu1,2, Xiangyang Luo1,2,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 105-131, 2024, DOI:10.32604/cmc.2024.055735 - 15 October 2024

    Abstract The rapid development of the internet and digital media has provided convenience while also posing a potential risk of steganography abuse. Identifying steganographer is essential in tracing secret information origins and preventing illicit covert communication online. Accurately discerning a steganographer from many normal users is challenging due to various factors, such as the complexity in obtaining the steganography algorithm, extracting highly separability features, and modeling the cover data. After extensive exploration, several methods have been proposed for steganographer identification. This paper presents a survey of existing studies. Firstly, we provide a concise introduction to the More >

  • Open Access

    ARTICLE

    Cyber Security within Smart Cities: A Comprehensive Study and a Novel Intrusion Detection-Based Approach

    Mehdi Houichi1,*, Faouzi Jaidi1,2, Adel Bouhoula3

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 393-441, 2024, DOI:10.32604/cmc.2024.054007 - 15 October 2024

    Abstract The expansion of smart cities, facilitated by digital communications, has resulted in an enhancement of the quality of life and satisfaction among residents. The Internet of Things (IoT) continually generates vast amounts of data, which is subsequently analyzed to offer services to residents. The growth and development of IoT have given rise to a new paradigm. A smart city possesses the ability to consistently monitor and utilize the physical environment, providing intelligent services such as energy, transportation, healthcare, and entertainment for both residents and visitors. Research on the security and privacy of smart cities is… More >

  • Open Access

    ARTICLE

    Development of Multi-Agent-Based Indoor 3D Reconstruction

    Hoi Chuen Cheng, Frederick Ziyang Hong, Babar Hussain, Yiru Wang, Chik Patrick Yue*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 161-181, 2024, DOI:10.32604/cmc.2024.053079 - 15 October 2024

    Abstract Large-scale indoor 3D reconstruction with multiple robots faces challenges in core enabling technologies. This work contributes to a framework addressing localization, coordination, and vision processing for multi-agent reconstruction. A system architecture fusing visible light positioning, multi-agent path finding via reinforcement learning, and 360° camera techniques for 3D reconstruction is proposed. Our visible light positioning algorithm leverages existing lighting for centimeter-level localization without additional infrastructure. Meanwhile, a decentralized reinforcement learning approach is developed to solve the multi-agent path finding problem, with communications among agents optimized. Our 3D reconstruction pipeline utilizes equirectangular projection from 360° cameras to More >

  • Open Access

    ARTICLE

    Task Offloading and Trajectory Optimization in UAV Networks: A Deep Reinforcement Learning Method Based on SAC and A-Star

    Jianhua Liu*, Peng Xie, Jiajia Liu, Xiaoguang Tu

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1243-1273, 2024, DOI:10.32604/cmes.2024.054002 - 27 September 2024

    Abstract In mobile edge computing, unmanned aerial vehicles (UAVs) equipped with computing servers have emerged as a promising solution due to their exceptional attributes of high mobility, flexibility, rapid deployment, and terrain agnosticism. These attributes enable UAVs to reach designated areas, thereby addressing temporary computing swiftly in scenarios where ground-based servers are overloaded or unavailable. However, the inherent broadcast nature of line-of-sight transmission methods employed by UAVs renders them vulnerable to eavesdropping attacks. Meanwhile, there are often obstacles that affect flight safety in real UAV operation areas, and collisions between UAVs may also occur. To solve… More >

  • Open Access

    ARTICLE

    Examining the Quality Metrics of a Communication Network with Distributed Software-Defined Networking Architecture

    Khawaja Tahir Mehmood1,2,*, Shahid Atiq1, Intisar Ali Sajjad3, Muhammad Majid Hussain4, Malik M. Abdul Basit2

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1673-1708, 2024, DOI:10.32604/cmes.2024.053903 - 27 September 2024

    Abstract Software-Defined Networking (SDN), with segregated data and control planes, provides faster data routing, stability, and enhanced quality metrics, such as throughput (Th), maximum available bandwidth (Bd(max)), data transfer (DTransfer), and reduction in end-to-end delay (D(E-E)). This paper explores the critical work of deploying SDN in large­scale Data Center Networks (DCNs) to enhance its Quality of Service (QoS) parameters, using logically distributed control configurations. There is a noticeable increase in Delay(E-E) when adopting SDN with a unified (single) control structure in big DCNs to handle Hypertext Transfer Protocol (HTTP) requests causing a reduction in network quality parameters (Bd(max), Th, DTransfer, D(E-E),… More > Graphic Abstract

    Examining the Quality Metrics of a Communication Network with Distributed Software-Defined Networking Architecture

Displaying 1-10 on page 1 of 320. Per Page