Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (69)
  • Open Access

    ARTICLE

    A Hermitian C Differential Reproducing Kernel Interpolation Meshless Method for the 3D Microstructure-Dependent Static Flexural Analysis of Simply Supported and Functionally Graded Microplates

    Chih-Ping Wu*, Ruei-Syuan Chang

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 917-949, 2024, DOI:10.32604/cmes.2024.052307 - 20 August 2024

    Abstract This work develops a Hermitian C differential reproducing kernel interpolation meshless (DRKIM) method within the consistent couple stress theory (CCST) framework to study the three-dimensional (3D) microstructure-dependent static flexural behavior of a functionally graded (FG) microplate subjected to mechanical loads and placed under full simple supports. In the formulation, we select the transverse stress and displacement components and their first- and second-order derivatives as primary variables. Then, we set up the differential reproducing conditions (DRCs) to obtain the shape functions of the Hermitian C differential reproducing kernel (DRK) interpolant’s derivatives without using direct differentiation. The interpolant’s… More >

  • Open Access

    ARTICLE

    A Collocation Technique via Pell-Lucas Polynomials to Solve Fractional Differential Equation Model for HIV/AIDS with Treatment Compartment

    Gamze Yıldırım1,2, Şuayip Yüzbaşı3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 281-310, 2024, DOI:10.32604/cmes.2024.052181 - 20 August 2024

    Abstract In this study, a numerical method based on the Pell-Lucas polynomials (PLPs) is developed to solve the fractional order HIV/AIDS epidemic model with a treatment compartment. The HIV/AIDS mathematical model with a treatment compartment is divided into five classes, namely, susceptible patients (S), HIV-positive individuals (I), individuals with full-blown AIDS but not receiving ARV treatment (A), individuals being treated (T), and individuals who have changed their sexual habits sufficiently (R). According to the method, by utilizing the PLPs and the collocation points, we convert the fractional order HIV/AIDS epidemic model with a treatment compartment into… More >

  • Open Access

    REVIEW

    Review of Collocation Methods and Applications in Solving Science and Engineering Problems

    Weiwu Jiang1, Xiaowei Gao1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 41-76, 2024, DOI:10.32604/cmes.2024.048313 - 16 April 2024

    Abstract The collocation method is a widely used numerical method for science and engineering problems governed by partial differential equations. This paper provides a comprehensive review of collocation methods and their applications, focused on elasticity, heat conduction, electromagnetic field analysis, and fluid dynamics. The merits of the collocation method can be attributed to the need for element mesh, simple implementation, high computational efficiency, and ease in handling irregular domain problems since the collocation method is a type of node-based numerical method. Beginning with the fundamental principles of the collocation method, the discretization process in the continuous… More >

  • Open Access

    ARTICLE

    A Novel Method for Linear Systems of Fractional Ordinary Differential Equations with Applications to Time-Fractional PDEs

    Sergiy Reutskiy1, Yuhui Zhang2,*, Jun Lu3,*, Ciren Pubu4

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1583-1612, 2024, DOI:10.32604/cmes.2023.044878 - 29 January 2024

    Abstract This paper presents an efficient numerical technique for solving multi-term linear systems of fractional ordinary differential equations (FODEs) which have been widely used in modeling various phenomena in engineering and science. An approximate solution of the system is sought in the form of the finite series over the Müntz polynomials. By using the collocation procedure in the time interval, one gets the linear algebraic system for the coefficient of the expansion which can be easily solved numerically by a standard procedure. This technique also serves as the basis for solving the time-fractional partial differential equations More >

  • Open Access

    ARTICLE

    A Novel Accurate Method for Multi-Term Time-Fractional Nonlinear Diffusion Equations in Arbitrary Domains

    Tao Hu1, Cheng Huang2, Sergiy Reutskiy3,*, Jun Lu4, Ji Lin5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1521-1548, 2024, DOI:10.32604/cmes.2023.030449 - 17 November 2023

    Abstract A novel accurate method is proposed to solve a broad variety of linear and nonlinear (1+1)-dimensional and (2+1)- dimensional multi-term time-fractional partial differential equations with spatial operators of anisotropic diffusivity. For (1+1)-dimensional problems, analytical solutions that satisfy the boundary requirements are derived. Such solutions are numerically calculated using the trigonometric basis approximation for (2+1)-dimensional problems. With the aid of these analytical or numerical approximations, the original problems can be converted into the fractional ordinary differential equations, and solutions to the fractional ordinary differential equations are approximated by modified radial basis functions with time-dependent coefficients. An More >

  • Open Access

    PROCEEDINGS

    Zonal Finite Line Method and Its Applications in Thermal-Mechanical Analysis of Composite Structures

    Xiaowei Gao1,*, Huayu Liu1, Weilong Fan1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09510

    Abstract In this paper, a novel numerical method, Zonal Free Element Method (ZFLM), is proposed and used to solve thermal-mechanical problems composed of multiple and functionally graded materials. ZFLM is a collocation method, in which two or three lines in 2D or 3D problems, called as line-set, are used at each node to establish the solution scheme solving engineering problems governed by partial differential equations. In ZFLM, the Lagrange polynomial is adopted to approximate physical variables varying over each line of the line-set. The first-order partial derivative is derived by using a directional derivative technique along… More >

  • Open Access

    PROCEEDINGS

    Research Advances on the Collocation Methods Based on the PhysicalInformed Kernel Functions

    Zhuojia Fu1,*, Qiang Xi2, Wenzhi Xu1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09393

    Abstract In the past few decades, although traditional computational methods such as finite element have been successfully used in many scientific and engineering fields, they still face several challenging problems such as expensive computational cost, low computational efficiency, and difficulty in mesh generation in the numerical simulation of wave propagation under infinite domain, large-scale-ratio structures, engineering inverse problems and moving boundary problems. This paper introduces a class of collocation discretization techniques based on physical-informed kernel function (PIKF) to efficiently solve the above-mentioned problems. The key issue in the physical-informed kernel function collocation methods (PIKFCMs) is to… More >

  • Open Access

    ARTICLE

    New Perspective to Isogeometric Analysis: Solving Isogeometric Analysis Problem by Fitting Load Function

    Jingwen Ren1, Hongwei Lin1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2957-2984, 2023, DOI:10.32604/cmes.2023.025983 - 09 March 2023

    Abstract Isogeometric analysis (IGA) is introduced to establish the direct link between computer-aided design and analysis. It is commonly implemented by Galerkin formulations (isogeometric Galerkin, IGA-G) through the use of nonuniform rational B-splines (NURBS) basis functions for geometric design and analysis. Another promising approach, isogeometric collocation (IGA-C), working directly with the strong form of the partial differential equation (PDE) over the physical domain defined by NURBS geometry, calculates the derivatives of the numerical solution at the chosen collocation points. In a typical IGA, the knot vector of the NURBS numerical solution is only determined by the… More > Graphic Abstract

    New Perspective to Isogeometric Analysis: Solving Isogeometric Analysis Problem by Fitting Load Function

  • Open Access

    ARTICLE

    A Numerical Investigation Based on Exponential Collocation Method for Nonlinear SITR Model of COVID-19

    Mohammad Aslefallah1, Şuayip Yüzbaşi2, Saeid Abbasbandy1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.2, pp. 1687-1706, 2023, DOI:10.32604/cmes.2023.025647 - 06 February 2023

    Abstract In this work, the exponential approximation is used for the numerical simulation of a nonlinear SITR model as a system of differential equations that shows the dynamics of the new coronavirus (COVID-19). The SITR mathematical model is divided into four classes using fractal parameters for COVID-19 dynamics, namely, susceptible (S), infected (I), treatment (T), and recovered (R). The main idea of the presented method is based on the matrix representations of the exponential functions and their derivatives using collocation points. To indicate the usefulness of this method, we employ it in some cases. For error More > Graphic Abstract

    A Numerical Investigation Based on Exponential Collocation Method for Nonlinear SITR Model of COVID-19

  • Open Access

    ARTICLE

    The Localized Method of Fundamental Solution for Two Dimensional Signorini Problems

    Zhuowan Fan1, Yancheng Liu1, Anyu Hong1,*, Fugang Xu1,*, Fuzhang Wang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.132, No.1, pp. 341-355, 2022, DOI:10.32604/cmes.2022.019715 - 02 June 2022

    Abstract In this work, the localized method of fundamental solution (LMFS) is extended to Signorini problem. Unlike the traditional fundamental solution (MFS), the LMFS approximates the field quantity at each node by using the field quantities at the adjacent nodes. The idea of the LMFS is similar to the localized domain type method. The fictitious boundary nodes are proposed to impose the boundary condition and governing equations at each node to formulate a sparse matrix. The inequality boundary condition of Signorini problem is solved indirectly by introducing nonlinear complementarity problem function (NCP-function). Numerical examples are carried More >

Displaying 1-10 on page 1 of 69. Per Page