Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (30)
  • Open Access

    ARTICLE

    Development of Multi-Agent-Based Indoor 3D Reconstruction

    Hoi Chuen Cheng, Frederick Ziyang Hong, Babar Hussain, Yiru Wang, Chik Patrick Yue*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 161-181, 2024, DOI:10.32604/cmc.2024.053079 - 15 October 2024

    Abstract Large-scale indoor 3D reconstruction with multiple robots faces challenges in core enabling technologies. This work contributes to a framework addressing localization, coordination, and vision processing for multi-agent reconstruction. A system architecture fusing visible light positioning, multi-agent path finding via reinforcement learning, and 360° camera techniques for 3D reconstruction is proposed. Our visible light positioning algorithm leverages existing lighting for centimeter-level localization without additional infrastructure. Meanwhile, a decentralized reinforcement learning approach is developed to solve the multi-agent path finding problem, with communications among agents optimized. Our 3D reconstruction pipeline utilizes equirectangular projection from 360° cameras to More >

  • Open Access

    REVIEW

    A Review on Security and Privacy Issues Pertaining to Cyber-Physical Systems in the Industry 5.0 Era

    Abdullah Alabdulatif1, Navod Neranjan Thilakarathne2,*, Zaharaddeen Karami Lawal3,4,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3917-3943, 2024, DOI:10.32604/cmc.2024.054150 - 12 September 2024

    Abstract The advent of Industry 5.0 marks a transformative era where Cyber-Physical Systems (CPSs) seamlessly integrate physical processes with advanced digital technologies. However, as industries become increasingly interconnected and reliant on smart digital technologies, the intersection of physical and cyber domains introduces novel security considerations, endangering the entire industrial ecosystem. The transition towards a more cooperative setting, including humans and machines in Industry 5.0, together with the growing intricacy and interconnection of CPSs, presents distinct and diverse security and privacy challenges. In this regard, this study provides a comprehensive review of security and privacy concerns pertaining… More >

  • Open Access

    ARTICLE

    Privacy-Preserving Healthcare and Medical Data Collaboration Service System Based on Blockchain and Federated Learning

    Fang Hu1, Siyi Qiu2, Xiaolian Yang1, Chaolei Wu1, Miguel Baptista Nunes3, Hui Chen4,*

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2897-2915, 2024, DOI:10.32604/cmc.2024.052570 - 15 August 2024

    Abstract As the volume of healthcare and medical data increases from diverse sources, real-world scenarios involving data sharing and collaboration have certain challenges, including the risk of privacy leakage, difficulty in data fusion, low reliability of data storage, low effectiveness of data sharing, etc. To guarantee the service quality of data collaboration, this paper presents a privacy-preserving Healthcare and Medical Data Collaboration Service System combining Blockchain with Federated Learning, termed FL-HMChain. This system is composed of three layers: Data extraction and storage, data management, and data application. Focusing on healthcare and medical data, a healthcare and… More >

  • Open Access

    REVIEW

    A Comprehensive Systematic Review: Advancements in Skin Cancer Classification and Segmentation Using the ISIC Dataset

    Madiha Hameed1,3, Aneela Zameer1,*, Muhammad Asif Zahoor Raja2

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2131-2164, 2024, DOI:10.32604/cmes.2024.050124 - 08 July 2024

    Abstract The International Skin Imaging Collaboration (ISIC) datasets are pivotal resources for researchers in machine learning for medical image analysis, especially in skin cancer detection. These datasets contain tens of thousands of dermoscopic photographs, each accompanied by gold-standard lesion diagnosis metadata. Annual challenges associated with ISIC datasets have spurred significant advancements, with research papers reporting metrics surpassing those of human experts. Skin cancers are categorized into melanoma and non-melanoma types, with melanoma posing a greater threat due to its rapid potential for metastasis if left untreated. This paper aims to address challenges in skin cancer detection… More >

  • Open Access

    ARTICLE

    A New Solution to Intrusion Detection Systems Based on Improved Federated-Learning Chain

    Chunhui Li1,*, Hua Jiang2

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4491-4512, 2024, DOI:10.32604/cmc.2024.048431 - 20 June 2024

    Abstract In the context of enterprise systems, intrusion detection (ID) emerges as a critical element driving the digital transformation of enterprises. With systems spanning various sectors of enterprises geographically dispersed, the necessity for seamless information exchange has surged significantly. The existing cross-domain solutions are challenged by such issues as insufficient security, high communication overhead, and a lack of effective update mechanisms, rendering them less feasible for prolonged application on resource-limited devices. This study proposes a new cross-domain collaboration scheme based on federated chains to streamline the server-side workload. Within this framework, individual nodes solely engage in… More >

  • Open Access

    ARTICLE

    Robust and Trustworthy Data Sharing Framework Leveraging On-Chain and Off-Chain Collaboration

    Jinyang Yu1,2, Xiao Zhang1,2,3,*, Jinjiang Wang1,2, Yuchen Zhang1,2, Yulong Shi1,2, Linxuan Su1,2, Leijie Zeng1,2,*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2159-2179, 2024, DOI:10.32604/cmc.2024.047340 - 27 February 2024

    Abstract The proliferation of Internet of Things (IoT) systems has resulted in the generation of substantial data, presenting new challenges in reliable storage and trustworthy sharing. Conventional distributed storage systems are hindered by centralized management and lack traceability, while blockchain systems are limited by low capacity and high latency. To address these challenges, the present study investigates the reliable storage and trustworthy sharing of IoT data, and presents a novel system architecture that integrates on-chain and off-chain data manage systems. This architecture, integrating blockchain and distributed storage technologies, provides high-capacity, high-performance, traceable, and verifiable data storage… More >

  • Open Access

    ARTICLE

    Multi-Stream Temporally Enhanced Network for Video Salient Object Detection

    Dan Xu*, Jiale Ru, Jinlong Shi

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 85-104, 2024, DOI:10.32604/cmc.2023.045258 - 30 January 2024

    Abstract Video salient object detection (VSOD) aims at locating the most attractive objects in a video by exploring the spatial and temporal features. VSOD poses a challenging task in computer vision, as it involves processing complex spatial data that is also influenced by temporal dynamics. Despite the progress made in existing VSOD models, they still struggle in scenes of great background diversity within and between frames. Additionally, they encounter difficulties related to accumulated noise and high time consumption during the extraction of temporal features over a long-term duration. We propose a multi-stream temporal enhanced network (MSTENet)… More >

  • Open Access

    ARTICLE

    BLECA: A Blockchain-Based Lightweight and Efficient Cross-Domain Authentication Scheme for Smart Parks

    Fengting Luo, Ruwei Huang*, Yuyue Chen

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1815-1835, 2023, DOI:10.32604/cmc.2023.041676 - 29 November 2023

    Abstract Smart parks serve as integral components of smart cities, where they play a pivotal role in the process of urban modernization. The demand for cross-domain cooperation among smart devices from various parks has witnessed a significant increase. To ensure secure communication, device identities must undergo authentication. The existing cross-domain authentication schemes face issues such as complex authentication paths and high certificate management costs for devices, making it impractical for resource-constrained devices. This paper proposes a blockchain-based lightweight and efficient cross-domain authentication protocol for smart parks, which simplifies the authentication interaction and requires every device to More >

  • Open Access

    ARTICLE

    Satellite-Air-Terrestrial Cloud Edge Collaborative Networks: Architecture, Multi-Node Task Processing and Computation

    Sai Liu1, Zhenjiang Zhang1,*, Guangjie Han2, Bo Shen1

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 2651-2668, 2023, DOI:10.32604/iasc.2023.038477 - 11 September 2023

    Abstract Integrated satellite-terrestrial network (ISTN) has been considered a novel network architecture to achieve global three-dimensional coverage and ultra-wide area broadband access anytime and anywhere. Being a promising paradigm, cloud computing and mobile edge computing (MEC) have been identified as key technology enablers for ISTN to further improve quality of service and business continuity. However, most of the existing ISTN studies based on cloud computing and MEC regard satellite networks as relay networks, ignoring the feasibility of directly deploying cloud computing nodes and edge computing nodes on satellites. In addition, most computing tasks are transferred to… More >

  • Open Access

    ARTICLE

    Pedestrian and Vehicle Detection Based on Pruning YOLOv4 with Cloud-Edge Collaboration

    Huabin Wang1, Ruichao Mo2, Yuping Chen3, Weiwei Lin2,4,*, Minxian Xu5, Bo Liu3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 2025-2047, 2023, DOI:10.32604/cmes.2023.026910 - 26 June 2023

    Abstract Nowadays, the rapid development of edge computing has driven an increasing number of deep learning applications deployed at the edge of the network, such as pedestrian and vehicle detection, to provide efficient intelligent services to mobile users. However, as the accuracy requirements continue to increase, the components of deep learning models for pedestrian and vehicle detection, such as YOLOv4, become more sophisticated and the computing resources required for model training are increasing dramatically, which in turn leads to significant challenges in achieving effective deployment on resource-constrained edge devices while ensuring the high accuracy performance. For… More >

Displaying 1-10 on page 1 of 30. Per Page