Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access

    ARTICLE

    Enhancing Mild Cognitive Impairment Detection through Efficient Magnetic Resonance Image Analysis

    Atif Mehmood1,2, Zhonglong Zheng1,*, Rizwan Khan1, Ahmad Al Smadi3, Farah Shahid1,2, Shahid Iqbal4, Mutasem K. Alsmadi5, Yazeed Yasin Ghadi6, Syed Aziz Shah8, Mostafa M. Ibrahim7

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2081-2098, 2024, DOI:10.32604/cmc.2024.046869 - 15 August 2024

    Abstract Neuroimaging has emerged over the last few decades as a crucial tool in diagnosing Alzheimer’s disease (AD). Mild cognitive impairment (MCI) is a condition that falls between the spectrum of normal cognitive function and AD. However, previous studies have mainly used handcrafted features to classify MCI, AD, and normal control (NC) individuals. This paper focuses on using gray matter (GM) scans obtained through magnetic resonance imaging (MRI) for the diagnosis of individuals with MCI, AD, and NC. To improve classification performance, we developed two transfer learning strategies with data augmentation (i.e., shear range, rotation, zoom… More >

  • Open Access

    ARTICLE

    A Clinical Study on the Effect of Group Nostalgia Therapy on Quality of Life and Cognitive Function in Elderly Patients with Depression

    Yan Huang1,*, Xiaoye Liao2, Fen Cai3

    International Journal of Mental Health Promotion, Vol.25, No.12, pp. 1313-1321, 2023, DOI:10.32604/ijmhp.2023.030558 - 29 December 2023

    Abstract Background: Elderly people with depression require special care and attention. However, nostalgia is a complex emotional situation for a person who recalls the missing past. To improve mental health, quality of life, and attitudes toward aging in institutional care, group nostalgia therapy can be a nursing intermediary for the elderly. This study aimed to analyze the effect of group nostalgia therapy on quality of life cognitive function in elderly patients with depression. Methods: A total of 89 participants were enrolled in this study, which was further categorized into a control (n = 40) and a… More >

  • Open Access

    ARTICLE

    The Effect of Sleep and Cognition Enhancement Multimodal Intervention for Mild Cognitive Impairment with Sleep Disturbance in the Community-Dwelling Elderly

    Eun Kyoung Han, Hae Kyoung Son*

    International Journal of Mental Health Promotion, Vol.25, No.11, pp. 1197-1208, 2023, DOI:10.32604/ijmhp.2023.041560 - 08 December 2023

    Abstract Dementia prevalence has soared due to population aging. In Mild Cognitive Impairment (MCI) as a pre-dementia stage, sleep disturbances have raised much interest as a factor in a bidirectional relationship with cognitive decline. Thus, this study developed the Sleep and Cognition Enhancement Multimodal Intervention (SCEMI) based on Lazarus’ multimodal approach and conducted a randomized controlled experiment to investigate the effects of the novel program on sleep and cognition in MCI elderly. The participants were 55 MCI elderly with sleep disturbances at two dementia care centers located in S-city, Gyeonggi-do, South Korea (n = 25 in… More >

  • Open Access

    ARTICLE

    Alzheimer’s Disease Stage Classification Using a Deep Transfer Learning and Sparse Auto Encoder Method

    Deepthi K. Oommen*, J. Arunnehru

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 793-811, 2023, DOI:10.32604/cmc.2023.038640 - 08 June 2023

    Abstract Alzheimer’s Disease (AD) is a progressive neurological disease. Early diagnosis of this illness using conventional methods is very challenging. Deep Learning (DL) is one of the finest solutions for improving diagnostic procedures’ performance and forecast accuracy. The disease’s widespread distribution and elevated mortality rate demonstrate its significance in the older-onset and younger-onset age groups. In light of research investigations, it is vital to consider age as one of the key criteria when choosing the subjects. The younger subjects are more susceptible to the perishable side than the older onset. The proposed investigation concentrated on the… More >

  • Open Access

    ARTICLE

    Novel Computer-Aided Diagnosis System for the Early Detection of Alzheimer’s Disease

    Meshal Alharbi, Shabana R. Ziyad*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 5483-5505, 2023, DOI:10.32604/cmc.2023.032341 - 28 December 2022

    Abstract Aging is a natural process that leads to debility, disease, and dependency. Alzheimer’s disease (AD) causes degeneration of the brain cells leading to cognitive decline and memory loss, as well as dependence on others to fulfill basic daily needs. AD is the major cause of dementia. Computer-aided diagnosis (CADx) tools aid medical practitioners in accurately identifying diseases such as AD in patients. This study aimed to develop a CADx tool for the early detection of AD using the Intelligent Water Drop (IWD) algorithm and the Random Forest (RF) classifier. The IWD algorithm an efficient feature… More >

  • Open Access

    ARTICLE

    Brain Functional Networks with Dynamic Hypergraph Manifold Regularization for Classification of End-Stage Renal Disease Associated with Mild Cognitive Impairment

    Zhengtao Xi1, Chaofan Song2, Jiahui Zheng3, Haifeng Shi3, Zhuqing Jiao1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 2243-2266, 2023, DOI:10.32604/cmes.2023.023544 - 23 November 2022

    Abstract The structure and function of brain networks have been altered in patients with end-stage renal disease (ESRD). Manifold regularization (MR) only considers the pairing relationship between two brain regions and cannot represent functional interactions or higher-order relationships between multiple brain regions. To solve this issue, we developed a method to construct a dynamic brain functional network (DBFN) based on dynamic hypergraph MR (DHMR) and applied it to the classification of ESRD associated with mild cognitive impairment (ESRDaMCI). The construction of DBFN with Pearson’s correlation (PC) was transformed into an optimization model. Node convolution and hyperedge convolution… More > Graphic Abstract

    Brain Functional Networks with Dynamic Hypergraph Manifold Regularization for Classification of End-Stage Renal Disease Associated with Mild Cognitive Impairment

  • Open Access

    ARTICLE

    Prediction of Alzheimer’s Using Random Forest with Radiomic Features

    Anuj Singh*, Raman Kumar, Arvind Kumar Tiwari

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 513-530, 2023, DOI:10.32604/csse.2023.029608 - 16 August 2022

    Abstract Alzheimer’s disease is a non-reversible, non-curable, and progressive neurological disorder that induces the shrinkage and death of a specific neuronal population associated with memory formation and retention. It is a frequently occurring mental illness that occurs in about 60%–80% of cases of dementia. It is usually observed between people in the age group of 60 years and above. Depending upon the severity of symptoms the patients can be categorized in Cognitive Normal (CN), Mild Cognitive Impairment (MCI) and Alzheimer’s Disease (AD). Alzheimer’s disease is the last phase of the disease where the brain is severely… More >

  • Open Access

    ARTICLE

    Alzheimer’s Disease Diagnosis Based on a Semantic Rule-Based Modeling and Reasoning Approach

    Nora Shoaip1, Amira Rezk1, Shaker EL-Sappagh2,3, Tamer Abuhmed4,*, Sherif Barakat1, Mohammed Elmogy5

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 3531-3548, 2021, DOI:10.32604/cmc.2021.019069 - 24 August 2021

    Abstract Alzheimer’s disease (AD) is a very complex disease that causes brain failure, then eventually, dementia ensues. It is a global health problem. 99% of clinical trials have failed to limit the progression of this disease. The risks and barriers to detecting AD are huge as pathological events begin decades before appearing clinical symptoms. Therapies for AD are likely to be more helpful if the diagnosis is determined early before the final stage of neurological dysfunction. In this regard, the need becomes more urgent for biomarker-based detection. A key issue in understanding AD is the need… More >

Displaying 1-10 on page 1 of 8. Per Page