Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    HCRVD: A Vulnerability Detection System Based on CST-PDG Hierarchical Code Representation Learning

    Zhihui Song, Jinchen Xu, Kewei Li, Zheng Shan*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4573-4601, 2024, DOI:10.32604/cmc.2024.049310 - 20 June 2024

    Abstract Prior studies have demonstrated that deep learning-based approaches can enhance the performance of source code vulnerability detection by training neural networks to learn vulnerability patterns in code representations. However, due to limitations in code representation and neural network design, the validity and practicality of the model still need to be improved. Additionally, due to differences in programming languages, most methods lack cross-language detection generality. To address these issues, in this paper, we analyze the shortcomings of previous code representations and neural networks. We propose a novel hierarchical code representation that combines Concrete Syntax Trees (CST)… More >

  • Open Access

    ARTICLE

    C-CORE: Clustering by Code Representation to Prioritize Test Cases in Compiler Testing

    Wei Zhou1, Xincong Jiang2,*, Chuan Qin2

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 2069-2093, 2024, DOI:10.32604/cmes.2023.043248 - 29 January 2024

    Abstract Edge devices, due to their limited computational and storage resources, often require the use of compilers for program optimization. Therefore, ensuring the security and reliability of these compilers is of paramount importance in the emerging field of edge AI. One widely used testing method for this purpose is fuzz testing, which detects bugs by inputting random test cases into the target program. However, this process consumes significant time and resources. To improve the efficiency of compiler fuzz testing, it is common practice to utilize test case prioritization techniques. Some researchers use machine learning to predict… More >

Displaying 1-10 on page 1 of 2. Per Page