Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (232)
  • Open Access

    ARTICLE

    Enhancing Septic Shock Detection through Interpretable Machine Learning

    Md Mahfuzur Rahman1,*, Md Solaiman Chowdhury2, Mohammad Shorfuzzaman3, Lutful Karim4, Md Shafiullah5, Farag Azzedin1

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2501-2525, 2024, DOI:10.32604/cmes.2024.055065 - 31 October 2024

    Abstract This article presents an innovative approach that leverages interpretable machine learning models and cloud computing to accelerate the detection of septic shock by analyzing electronic health data. Unlike traditional methods, which often lack transparency in decision-making, our approach focuses on early detection, offering a proactive strategy to mitigate the risks of sepsis. By integrating advanced machine learning algorithms with interpretability techniques, our method not only provides accurate predictions but also offers clear insights into the factors influencing the model’s decisions. Moreover, we introduce a preference-based matching algorithm to evaluate disease severity, enabling timely interventions guided… More >

  • Open Access

    ARTICLE

    Hybrid Task Scheduling Algorithm for Makespan Optimisation in Cloud Computing: A Performance Evaluation

    Abdulrahman M. Abdulghani*

    Journal on Artificial Intelligence, Vol.6, pp. 241-259, 2024, DOI:10.32604/jai.2024.056259 - 16 October 2024

    Abstract Cloud computing has rapidly evolved into a critical technology, seamlessly integrating into various aspects of daily life. As user demand for cloud services continues to surge, the need for efficient virtualization and resource management becomes paramount. At the core of this efficiency lies task scheduling, a complex process that determines how tasks are allocated and executed across cloud resources. While extensive research has been conducted in the area of task scheduling, optimizing multiple objectives simultaneously remains a significant challenge due to the NP (Non-deterministic Polynomial) Complete nature of the problem. This study aims to address… More >

  • Open Access

    ARTICLE

    MPDP: A Probabilistic Architecture for Microservice Performance Diagnosis and Prediction

    Talal H. Noor*

    Computer Systems Science and Engineering, Vol.48, No.5, pp. 1273-1299, 2024, DOI:10.32604/csse.2024.052510 - 13 September 2024

    Abstract In recent years, container-based cloud virtualization solutions have emerged to mitigate the performance gap between non-virtualized and virtualized physical resources. However, there is a noticeable absence of techniques for predicting microservice performance in current research, which impacts cloud service users’ ability to determine when to provision or de-provision microservices. Predicting microservice performance poses challenges due to overheads associated with actions such as variations in processing time caused by resource contention, which potentially leads to user confusion. In this paper, we propose, develop, and validate a probabilistic architecture named Microservice Performance Diagnosis and Prediction (MPDP). MPDP… More >

  • Open Access

    ARTICLE

    Data-Oriented Operating System for Big Data and Cloud

    Selwyn Darryl Kessler, Kok-Why Ng*, Su-Cheng Haw*

    Intelligent Automation & Soft Computing, Vol.39, No.4, pp. 633-647, 2024, DOI:10.32604/iasc.2024.054154 - 06 September 2024

    Abstract Operating System (OS) is a critical piece of software that manages a computer’s hardware and resources, acting as the intermediary between the computer and the user. The existing OS is not designed for Big Data and Cloud Computing, resulting in data processing and management inefficiency. This paper proposes a simplified and improved kernel on an x86 system designed for Big Data and Cloud Computing purposes. The proposed algorithm utilizes the performance benefits from the improved Input/Output (I/O) performance. The performance engineering runs the data-oriented design on traditional data management to improve data processing speed by… More >

  • Open Access

    ARTICLE

    MV-Honeypot: Security Threat Analysis by Deploying Avatar as a Honeypot in COTS Metaverse Platforms

    Arpita Dinesh Sarang1, Mohsen Ali Alawami2, Ki-Woong Park3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 655-669, 2024, DOI:10.32604/cmes.2024.053434 - 20 August 2024

    Abstract Nowadays, the use of Avatars that are unique digital depictions has increased by users to access Metaverse—a virtual reality environment—through multiple devices and for various purposes. Therefore, the Avatar and Metaverse are being developed with a new theory, application, and design, necessitating the association of more personal data and devices of targeted users every day. This Avatar and Metaverse technology explosion raises privacy and security concerns, leading to cyber attacks. MV-Honeypot, or Metaverse-Honeypot, as a commercial off-the-shelf solution that can counter these cyber attack-causing vulnerabilities, should be developed. To fill this gap, we study user’s More > Graphic Abstract

    MV-Honeypot: Security Threat Analysis by Deploying Avatar as a Honeypot in COTS Metaverse Platforms

  • Open Access

    ARTICLE

    A Novel Optimization Approach for Energy-Efficient Multiple Workflow Scheduling in Cloud Environment

    Ambika Aggarwal1, Sunil Kumar2,3, Ashok Bhansali4, Deema Mohammed Alsekait5,*, Diaa Salama AbdElminaam6,7,8

    Computer Systems Science and Engineering, Vol.48, No.4, pp. 953-967, 2024, DOI:10.32604/csse.2024.050406 - 17 July 2024

    Abstract Existing multiple workflow scheduling techniques focus on traditional Quality of Service (QoS) parameters such as cost, deadline, and makespan to find optimal solutions by consuming a large amount of electrical energy. Higher energy consumption decreases system efficiency, increases operational cost, and generates more carbon footprint. These major problems can lead to several problems, such as economic strain, environmental degradation, resource depletion, energy dependence, health impacts, etc. In a cloud computing environment, scheduling multiple workflows is critical in developing a strategy for energy optimization, which is an NP-hard problem. This paper proposes a novel, bi-phase Energy-Efficient… More >

  • Open Access

    ARTICLE

    Reducing the Encrypted Data Size: Healthcare with IoT-Cloud Computing Applications

    Romaissa Kebache1, Abdelkader Laouid1,*, Ahcene Bounceur2, Mostefa Kara1,3, Konstantinos Karampidis4, Giorgos Papadourakis4, Mohammad Hammoudeh2

    Computer Systems Science and Engineering, Vol.48, No.4, pp. 1055-1072, 2024, DOI:10.32604/csse.2024.048738 - 17 July 2024

    Abstract Internet cloud services come at a price, especially when they provide top-tier security measures. The cost incurred by cloud utilization is directly proportional to the storage requirements. Companies are always looking to increase profits and reduce costs while preserving the security of their data by encrypting them. One of the offered solutions is to find an efficient encryption method that can store data in a much smaller space than traditional encryption techniques. This article introduces a novel encryption approach centered on consolidating information into a single ciphertext by implementing Multi-Key Embedded Encryption (MKEE). The effectiveness… More >

  • Open Access

    ARTICLE

    Systematic Cloud-Based Optimization: Twin-Fold Moth Flame Algorithm for VM Deployment and Load-Balancing

    Umer Nauman1, Yuhong Zhang2, Zhihui Li3, Tong Zhen1,3,*

    Intelligent Automation & Soft Computing, Vol.39, No.3, pp. 477-510, 2024, DOI:10.32604/iasc.2024.050726 - 11 July 2024

    Abstract Cloud computing has gained significant recognition due to its ability to provide a broad range of online services and applications. Nevertheless, existing commercial cloud computing models demonstrate an appropriate design by concentrating computational assets, such as preservation and server infrastructure, in a limited number of large-scale worldwide data facilities. Optimizing the deployment of virtual machines (VMs) is crucial in this scenario to ensure system dependability, performance, and minimal latency. A significant barrier in the present scenario is the load distribution, particularly when striving for improved energy consumption in a hypothetical grid computing framework. This design… More >

  • Open Access

    REVIEW

    Systematic Review: Load Balancing in Cloud Computing by Using Metaheuristic Based Dynamic Algorithms

    Darakhshan Syed*, Ghulam Muhammad, Safdar Rizvi

    Intelligent Automation & Soft Computing, Vol.39, No.3, pp. 437-476, 2024, DOI:10.32604/iasc.2024.050681 - 11 July 2024

    Abstract Cloud Computing has the ability to provide on-demand access to a shared resource pool. It has completely changed the way businesses are managed, implement applications, and provide services. The rise in popularity has led to a significant increase in the user demand for services. However, in cloud environments efficient load balancing is essential to ensure optimal performance and resource utilization. This systematic review targets a detailed description of load balancing techniques including static and dynamic load balancing algorithms. Specifically, metaheuristic-based dynamic load balancing algorithms are identified as the optimal solution in case of increased traffic. More >

  • Open Access

    ARTICLE

    Exploring Multi-Task Learning for Forecasting Energy-Cost Resource Allocation in IoT-Cloud Systems

    Mohammad Aldossary1,*, Hatem A. Alharbi2, Nasir Ayub3

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4603-4620, 2024, DOI:10.32604/cmc.2024.050862 - 20 June 2024

    Abstract Cloud computing has become increasingly popular due to its capacity to perform computations without relying on physical infrastructure, thereby revolutionizing computer processes. However, the rising energy consumption in cloud centers poses a significant challenge, especially with the escalating energy costs. This paper tackles this issue by introducing efficient solutions for data placement and node management, with a clear emphasis on the crucial role of the Internet of Things (IoT) throughout the research process. The IoT assumes a pivotal role in this study by actively collecting real-time data from various sensors strategically positioned in and around… More >

Displaying 1-10 on page 1 of 232. Per Page