Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Classification-Detection of Metal Surfaces under Lower Edge Sharpness Using a Deep Learning-Based Approach Combined with an Enhanced LoG Operator

    Hong Zhang1,*, Jiaming Zhou1, Qi Wang1, Chengxi Zhu1, Haijian Shao2

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1551-1572, 2023, DOI:10.32604/cmes.2023.027035 - 26 June 2023

    Abstract Metal flat surface in-line surface defect detection is notoriously difficult due to obstacles such as high surface reflectivity, pseudo-defect interference, and random elastic deformation. This study evaluates the approach for detecting scratches on a metal surface in order to address a problem in the detection process. This paper proposes an improved Gauss-Laplace (LoG) operator combined with a deep learning technique for metal surface scratch identification in order to solve the difficulties that it is challenging to reduce noise and that the edges are unclear when utilizing existing edge detection algorithms. In the process of scratch… More >

  • Open Access

    ARTICLE

    Hemodynamic Analysis and Diagnosis Based on Multi-Deep Learning Models

    Xing Deng1,2, Feipeng Da1,*, Haijian Shao2,3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.6, pp. 1369-1383, 2023, DOI:10.32604/fdmp.2023.024836 - 30 January 2023

    Abstract This study employs nine distinct deep learning models to categorize 12,444 blood cell images and automatically extract from them relevant information with an accuracy that is beyond that achievable with traditional techniques. The work is intended to improve current methods for the assessment of human health through measurement of the distribution of four types of blood cells, namely, eosinophils, neutrophils, monocytes, and lymphocytes, known for their relationship with human body damage, inflammatory regions, and organ illnesses, in particular, and with the health of the immune system and other hazards, such as cardiovascular disease or infections, More > Graphic Abstract

    Hemodynamic Analysis and Diagnosis Based on Multi-Deep Learning Models

  • Open Access

    REVIEW

    Deep Learning Applications for COVID-19 Analysis: A State-of-the-Art Survey

    Wenqian Li1, Xing Deng1,2,*, Haijian Shao1, Xia Wang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.1, pp. 65-98, 2021, DOI:10.32604/cmes.2021.016981 - 24 August 2021

    Abstract The COVID-19 has resulted in catastrophic situation and the deaths of millions of people all over the world. In this paper, the predictions of epidemiological propagation models, such as SIR and SEIR, are introduced to analyze the earlier COVID-19 propagation. The deep learning methods combined with transfer learning are familiar with classification-detection approaches based on chest X-ray and CT images are presented in detail. Besides, deep learning approaches have also been applied to lung ultrasound (LUS), which has been shown to be more sensitive than chest X-ray and CT images in detecting COVID-19. In the… More > Graphic Abstract

    Deep Learning Applications for COVID-19 Analysis: A <i>State-of-the-Art</i> Survey

Displaying 1-10 on page 1 of 3. Per Page