Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    A Healthcare System for COVID19 Classification Using Multi-Type Classical Features Selection

    Muhammad Attique Khan1, Majed Alhaisoni2, Muhammad Nazir1, Abdullah Alqahtani3, Adel Binbusayyis3, Shtwai Alsubai3, Yunyoung Nam4, Byeong-Gwon Kang4,*

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 1393-1412, 2023, DOI:10.32604/cmc.2023.032064 - 22 September 2022

    Abstract The coronavirus (COVID19), also known as the novel coronavirus, first appeared in December 2019 in Wuhan, China. After that, it quickly spread throughout the world and became a disease. It has significantly impacted our everyday lives, the national and international economies, and public health. However, early diagnosis is critical for prompt treatment and reducing trauma in the healthcare system. Clinical radiologists primarily use chest X-rays, and computerized tomography (CT) scans to test for pneumonia infection. We used Chest CT scans to predict COVID19 pneumonia and healthy scans in this study. We proposed a joint framework… More >

  • Open Access

    ARTICLE

    An Integrated Deep Learning Framework for Fruits Diseases Classification

    Abdul Majid1, Muhammad Attique Khan1, Majed Alhaisoni2, Muhammad Asfand E. yar3, Usman Tariq4, Nazar Hussain1, Yunyoung Nam5,*, Seifedine Kadry6

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 1387-1402, 2022, DOI:10.32604/cmc.2022.017701 - 03 November 2021

    Abstract Agriculture has been an important research area in the field of image processing for the last five years. Diseases affect the quality and quantity of fruits, thereby disrupting the economy of a country. Many computerized techniques have been introduced for detecting and recognizing fruit diseases. However, some issues remain to be addressed, such as irrelevant features and the dimensionality of feature vectors, which increase the computational time of the system. Herein, we propose an integrated deep learning framework for classifying fruit diseases. We consider seven types of fruits, i.e., apple, cherry, blueberry, grapes, peach, citrus,… More >

  • Open Access

    ARTICLE

    Classification of COVID-19 CT Scans via Extreme Learning Machine

    Muhammad Attique Khan1, Abdul Majid1, Tallha Akram2, Nazar Hussain1, Yunyoung Nam3,*, Seifedine Kadry4, Shui-Hua Wang5, Majed Alhaisoni6

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 1003-1019, 2021, DOI:10.32604/cmc.2021.015541 - 22 March 2021

    Abstract Here, we use multi-type feature fusion and selection to predict COVID-19 infections on chest computed tomography (CT) scans. The scheme operates in four steps. Initially, we prepared a database containing COVID-19 pneumonia and normal CT scans. These images were retrieved from the Radiopaedia COVID-19 website. The images were divided into training and test sets in a ratio of 70:30. Then, multiple features were extracted from the training data. We used canonical correlation analysis to fuse the features into single vectors; this enhanced the predictive capacity. We next implemented a genetic algorithm (GA) in which an More >

Displaying 1-10 on page 1 of 3. Per Page