Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Fuzzy Machine Learning-Based Algorithms for Mapping Cumin and Fennel Spices Crop Fields Using Sentinel-2 Satellite Data

    Shilpa Suman1, Abhishek Rawat2,*, Anil Kumar3, S. K. Tiwari4

    Revue Internationale de Géomatique, Vol.33, pp. 363-381, 2024, DOI:10.32604/rig.2024.053981 - 18 September 2024

    Abstract In this study, the impact of the training sample selection method on the performance of fuzzy-based Possibilistic c-means (PCM) and Noise Clustering (NC) classifiers were examined and mapped the cumin and fennel rabi crop. Two training sample selection approaches that have been investigated in this study are “mean” and “individual sample as mean”. Both training sample techniques were applied to the PCM and NC classifiers to classify the two indices approach. Both approaches have been studied to decrease spectral information in temporal data processing. The Modified Soil Adjusted Vegetation Index 2 (MSAVI-2) and Class-Based Sensor… More >

Displaying 1-10 on page 1 of 1. Per Page