Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,419)
  • Open Access

    REVIEW

    Software Reliability Prediction Using Ensemble Learning on Selected Features in Imbalanced and Balanced Datasets: A Review

    Suneel Kumar Rath1, Madhusmita Sahu1, Shom Prasad Das2, Junali Jasmine Jena3, Chitralekha Jena4, Baseem Khan5,6,7,*, Ahmed Ali7, Pitshou Bokoro7

    Computer Systems Science and Engineering, Vol.48, No.6, pp. 1513-1536, 2024, DOI:10.32604/csse.2024.057067 - 22 November 2024

    Abstract Redundancy, correlation, feature irrelevance, and missing samples are just a few problems that make it difficult to analyze software defect data. Additionally, it might be challenging to maintain an even distribution of data relating to both defective and non-defective software. The latter software class’s data are predominately present in the dataset in the majority of experimental situations. The objective of this review study is to demonstrate the effectiveness of combining ensemble learning and feature selection in improving the performance of defect classification. Besides the successful feature selection approach, a novel variant of the ensemble learning… More >

  • Open Access

    ARTICLE

    Machine Learning-Driven Classification for Enhanced Rule Proposal Framework

    B. Gomathi1,*, R. Manimegalai1, Srivatsan Santhanam2, Atreya Biswas3

    Computer Systems Science and Engineering, Vol.48, No.6, pp. 1749-1765, 2024, DOI:10.32604/csse.2024.056659 - 22 November 2024

    Abstract In enterprise operations, maintaining manual rules for enterprise processes can be expensive, time-consuming, and dependent on specialized domain knowledge in that enterprise domain. Recently, rule-generation has been automated in enterprises, particularly through Machine Learning, to streamline routine tasks. Typically, these machine models are black boxes where the reasons for the decisions are not always transparent, and the end users need to verify the model proposals as a part of the user acceptance testing to trust it. In such scenarios, rules excel over Machine Learning models as the end-users can verify the rules and have more… More >

  • Open Access

    ARTICLE

    Performance Analysis of Machine Learning-Based Intrusion Detection with Hybrid Feature Selection

    Mohammad Al-Omari1, Qasem Abu Al-Haija2,*

    Computer Systems Science and Engineering, Vol.48, No.6, pp. 1537-1555, 2024, DOI:10.32604/csse.2024.056257 - 22 November 2024

    Abstract More businesses are deploying powerful Intrusion Detection Systems (IDS) to secure their data and physical assets. Improved cyber-attack detection and prevention in these systems requires machine learning (ML) approaches. This paper examines a cyber-attack prediction system combining feature selection (FS) and ML. Our technique’s foundation was based on Correlation Analysis (CA), Mutual Information (MI), and recursive feature reduction with cross-validation. To optimize the IDS performance, the security features must be carefully selected from multiple-dimensional datasets, and our hybrid FS technique must be extended to validate our methodology using the improved UNSW-NB 15 and TON_IoT datasets. More >

  • Open Access

    ARTICLE

    An Expert System to Detect Political Arabic Articles Orientation Using CatBoost Classifier Boosted by Multi-Level Features

    Saad M. Darwish1,*, Abdul Rahman M. Sabri2, Dhafar Hamed Abd2, Adel A. Elzoghabi1

    Computer Systems Science and Engineering, Vol.48, No.6, pp. 1595-1624, 2024, DOI:10.32604/csse.2024.054615 - 22 November 2024

    Abstract The number of blogs and other forms of opinionated online content has increased dramatically in recent years. Many fields, including academia and national security, place an emphasis on automated political article orientation detection. Political articles (especially in the Arab world) are different from other articles due to their subjectivity, in which the author’s beliefs and political affiliation might have a significant influence on a political article. With categories representing the main political ideologies, this problem may be thought of as a subset of the text categorization (classification). In general, the performance of machine learning models… More >

  • Open Access

    REVIEW

    A Survey of Lung Nodules Detection and Classification from CT Scan Images

    Salman Ahmed1, Fazli Subhan2,3, Mazliham Mohd Su’ud3,*, Muhammad Mansoor Alam3,4, Adil Waheed5

    Computer Systems Science and Engineering, Vol.48, No.6, pp. 1483-1511, 2024, DOI:10.32604/csse.2024.053997 - 22 November 2024

    Abstract In the contemporary era, the death rate is increasing due to lung cancer. However, technology is continuously enhancing the quality of well-being. To improve the survival rate, radiologists rely on Computed Tomography (CT) scans for early detection and diagnosis of lung nodules. This paper presented a detailed, systematic review of several identification and categorization techniques for lung nodules. The analysis of the report explored the challenges, advancements, and future opinions in computer-aided diagnosis CAD systems for detecting and classifying lung nodules employing the deep learning (DL) algorithm. The findings also highlighted the usefulness of DL… More >

  • Open Access

    REVIEW

    A Systematic Review of Automated Classification for Simple and Complex Query SQL on NoSQL Database

    Nurhadi, Rabiah Abdul Kadir*, Ely Salwana Mat Surin, Mahidur R. Sarker*

    Computer Systems Science and Engineering, Vol.48, No.6, pp. 1405-1435, 2024, DOI:10.32604/csse.2024.051851 - 22 November 2024

    Abstract A data lake (DL), abbreviated as DL, denotes a vast reservoir or repository of data. It accumulates substantial volumes of data and employs advanced analytics to correlate data from diverse origins containing various forms of semi-structured, structured, and unstructured information. These systems use a flat architecture and run different types of data analytics. NoSQL databases are nontabular and store data in a different manner than the relational table. NoSQL databases come in various forms, including key-value pairs, documents, wide columns, and graphs, each based on its data model. They offer simpler scalability and generally outperform… More >

  • Open Access

    ARTICLE

    Improving Badminton Action Recognition Using Spatio-Temporal Analysis and a Weighted Ensemble Learning Model

    Farida Asriani1,2, Azhari Azhari1,*, Wahyono Wahyono1

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3079-3096, 2024, DOI:10.32604/cmc.2024.058193 - 18 November 2024

    Abstract Incredible progress has been made in human action recognition (HAR), significantly impacting computer vision applications in sports analytics. However, identifying dynamic and complex movements in sports like badminton remains challenging due to the need for precise recognition accuracy and better management of complex motion patterns. Deep learning techniques like convolutional neural networks (CNNs), long short-term memory (LSTM), and graph convolutional networks (GCNs) improve recognition in large datasets, while the traditional machine learning methods like SVM (support vector machines), RF (random forest), and LR (logistic regression), combined with handcrafted features and ensemble approaches, perform well but… More >

  • Open Access

    ARTICLE

    Classification of Cybersecurity Threats, Vulnerabilities and Countermeasures in Database Systems

    Mohammed Amin Almaiah1,*, Leen Mohammad Saqr1, Leen Ahmad Al-Rawwash1, Layan Ahmed Altellawi1, Romel Al-Ali2,*, Omar Almomani3

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3189-3220, 2024, DOI:10.32604/cmc.2024.057673 - 18 November 2024

    Abstract Database systems have consistently been prime targets for cyber-attacks and threats due to the critical nature of the data they store. Despite the increasing reliance on database management systems, this field continues to face numerous cyber-attacks. Database management systems serve as the foundation of any information system or application. Any cyber-attack can result in significant damage to the database system and loss of sensitive data. Consequently, cyber risk classifications and assessments play a crucial role in risk management and establish an essential framework for identifying and responding to cyber threats. Risk assessment aids in understanding… More >

  • Open Access

    ARTICLE

    Comparative Analysis of Machine Learning Algorithms for Email Phishing Detection Using TF-IDF, Word2Vec, and BERT

    Arar Al Tawil1,*, Laiali Almazaydeh2, Doaa Qawasmeh3, Baraah Qawasmeh4, Mohammad Alshinwan1,5, Khaled Elleithy6

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3395-3412, 2024, DOI:10.32604/cmc.2024.057279 - 18 November 2024

    Abstract Cybercriminals often use fraudulent emails and fictitious email accounts to deceive individuals into disclosing confidential information, a practice known as phishing. This study utilizes three distinct methodologies, Term Frequency-Inverse Document Frequency, Word2Vec, and Bidirectional Encoder Representations from Transformers, to evaluate the effectiveness of various machine learning algorithms in detecting phishing attacks. The study uses feature extraction methods to assess the performance of Logistic Regression, Decision Tree, Random Forest, and Multilayer Perceptron algorithms. The best results for each classifier using Term Frequency-Inverse Document Frequency were Multilayer Perceptron (Precision: 0.98, Recall: 0.98, F1-score: 0.98, Accuracy: 0.98). Word2Vec’s More >

  • Open Access

    ARTICLE

    HGNN-ETC: Higher-Order Graph Neural Network Based on Chronological Relationships for Encrypted Traffic Classification

    Rongwei Yu, Xiya Guo*, Peihao Zhang, Kaijuan Zhang

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2643-2664, 2024, DOI:10.32604/cmc.2024.056165 - 18 November 2024

    Abstract Encrypted traffic plays a crucial role in safeguarding network security and user privacy. However, encrypting malicious traffic can lead to numerous security issues, making the effective classification of encrypted traffic essential. Existing methods for detecting encrypted traffic face two significant challenges. First, relying solely on the original byte information for classification fails to leverage the rich temporal relationships within network traffic. Second, machine learning and convolutional neural network methods lack sufficient network expression capabilities, hindering the full exploration of traffic’s potential characteristics. To address these limitations, this study introduces a traffic classification method that utilizes… More >

Displaying 1-10 on page 1 of 1419. Per Page