Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (34)
  • Open Access

    ARTICLE

    Cytotoxicity assessment of a gold nanoparticle-chitosan nanocomposite as an effi cient support for cell immobilization: comparison with chitosan hydrogel and chitosan-gelatin

    Mohammad Reza RAMEZANI1, Hossein NADERI-MANESH1, *, Hossain-Ali RAFIEEPOUR2

    BIOCELL, Vol.38, No.1, pp. 11-16, 2014, DOI:10.32604/biocell.2014.38.011

    Abstract Cell-based biosensors have become a research hotspot in the biosensors and bioelectronics fields. The main feature of cell-based biosensors is immobilization of living cells on the surface of transducers. Different types of polymers which are used as scaffolds for cell growth should be biocompatible and should have reactive functional groups for further attachment of biomolecules. In this work, cell attachment and proliferation on chitosan hydrogel, chitosan-gelatin and gold nanoparticle-chitosan nanocomposite membranes was studied. Characterization of the membranes was performed using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Cytotoxicity assessment on HEK293 cells was carried out for all… More >

  • Open Access

    ARTICLE

    The Effect of Processing Temperature on Mechanical Properties of Novel Silk Fibroin and Chitosan Blend Scaffolds for Musculoskeletal Regeneration

    C. N. Rios1, J. N. Augustine1, A. B. Mathur1

    Molecular & Cellular Biomechanics, Vol.3, No.4, pp. 173-174, 2006, DOI:10.32604/mcb.2006.003.173

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Chitosan-based Semi-permeable Nerve Conduits Support Periphereal Nerve Regeneration in Goats and Nonhuman Primates

    A-J. Wang1, Q. Ao1, 2, K. Gong1, Z-H. Zheng1, G-Y. Lu1, G. Wang1, Q. He1, L-J. Kong1, Y-D. Gong1, N-M. Zhao1, X-F. Zhang1

    Molecular & Cellular Biomechanics, Vol.3, No.4, pp. 143-144, 2006, DOI:10.32604/mcb.2006.003.143

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Synthesis of Water-Soluble Chitosan From Squid Pens Waste for Capsule Shell Materials

    Malinda Syifa Yusharani, Stenley, Harmami, Ita Ulfin, Suprapto Suprapto, Yatim Lailun Ni’mah*

    Journal of Renewable Materials, Vol.7, No.7, pp. 643-653, 2019, DOI:10.32604/jrm.2019.04185

    Abstract Water-Soluble Chitosan (WSC) has been sucessfuly synthesized from squid pens waste. The synthesis of chitosan from chitin was carried out by optimization of deacetylation temperature and time. Chitin was obtained from squid pens waste by demineralization and deproteinization process. HCl 7% was used for demineralization and NaOH 10% at 60°C was applied for deproteinization process. Deacetylation reaction was carried out at varied temperatures i.e., 60°C, 70°C, 80°C, 90°C and 100°C in NaOH 50% solution for 10 hours. Deacetylation reaction time were varied for 2 hours, 4 hours, 6 hours, 8 hours, and 10 hours. The crude chitosan obtained then reacted… More >

  • Open Access

    ARTICLE

    Chitosan/Nanocrystalline Cellulose Biocomposites Based on Date Palm (Phoenix Dactylifera L.) Sheath Fibers

    Abeer M. Adel1, Amira M. El-Shafei2, Atef A. Ibrahim1, Mona T. Al-Shemy1,*

    Journal of Renewable Materials, Vol.7, No.6, pp. 567-582, 2019, DOI:10.32604/jrm.2019.00034

    Abstract In this study, nanocrystalline celluloses were used to enhance physical, mechanical and water vapor barrier properties of chitosan films for potential food packaging applications. Two different mineral acids (sulfuric and phosphoric) were used to extract nanocrystalline cellulose from date palm sheath fibers. The influence of cellulose I and cellulose II on the properties of the isolated nanocrystalline celluloses (e.g., yield, energy and length of intra- and intermolecular hydrogen bonds, and degree of substitution) were studied too. The characteristics of chitosan biocomposite film with phosphorylated nanocrystalline cellulose were compared to those with sulfated nanocrystalline cellulose. Results showed that besides cellulose polymorphism,… More >

  • Open Access

    ARTICLE

    Conversion of Waste Parasitic Insect (Hylobius abietis L.) into Antioxidative, Antimicrobial and Biodegradable Films

    Murat Kaya1,*, Idris Sargin1, Povilas Mulerčikas2, Jalel Labidi3, Asier M. Salaberria3, Yavuz S. Cakmak1, Sonata Kazlauskaitė2, Demet Erdonmez4, Vykintas Baublys5

    Journal of Renewable Materials, Vol.7, No.3, pp. 215-226, 2019, DOI:10.32604/jrm.2019.00002

    Abstract Hylobius abietis is a plant parasitic insect belonging to the order Coleoptera and which causes severe damages to coniferous forests in Northern and Eastern Europe. This current study is aimed to provide a new viewpoint into the waste of this insect by producing chitosan. Dry insect corpses consisted of 27.9% chitin and 86.2% of the chitin was converted into the chitosan. FT-IR spectra analyses confirmed the purity and the deacetylation degree of the produced chitosan (molecular weight of chitosan; 7.3 kDa). This chitosan exhibited antimicrobial activity against 18 bacterial strains. Further, biodegradable chitosan composite films with β-carotene were produced. Antioxidant… More >

  • Open Access

    ARTICLE

    Antioxidant Migration Studies in Chitosan Films Incorporated with Plant Extracts

    Victor Gomes Lauriano Souza1, Patrícia Freitas Rodrigues2, Maria Paula Duarte1, Ana Luísa Fernando1*

    Journal of Renewable Materials, Vol.6, No.5, pp. 548-558, 2018, DOI:10.7569/JRM.2018.634104

    Abstract The aim of this work was to develop an active biopolymer based on chitosan by incorporating natural antioxidants. Five essential oils (ginger, rosemary, sage, tea tree and thyme) and six hydro-alcoholic extracts (from ginger, green and black tea, kenaf leaves, rosemary and sage plants) were tested. Migration assays were carried out to evaluate the films' activity, and total phenolic content and antioxidant activity were monitored in the simulant during storage. Interaction between natural compounds and polymeric matrix was evaluated by FTIR spectroscopy. The diffusion of the phenolic compounds was not detected in the films incorporated with hydro-alcoholic extracts (HAEs), indicating… More >

  • Open Access

    ARTICLE

    Super Absorption Behavior of Chitosan by Freeze-Blasting in Different Alkaline Solvents

    Min Fan1,2,3*, Qiaoling Hu4

    Journal of Renewable Materials, Vol.6, No.5, pp. 457-463, 2018, DOI:10.7569/JRM.2017.634178

    Abstract The absorption behavior of chitosan in alkaline solution by freeze-blasting was studied. The influence of alkaline type, concentration, and small molecules was investigated, as well as the different roles of LiOH and NaOH in the absorption. Chitosan reached its maximum absorption rate when LiOH concentration was 4.8 wt% and NaOH 4.0 wt%, respectively. Chitosan showed better absorption capacity in LiOH solution. Urea could improve the absorption when its concentration was more than or equal to 4.0 wt%, and the improvement was greater in NaOH solution. Thiourea showed no obvious effect in LiOH solution, but showed an effect when NaOH concentration… More >

  • Open Access

    ARTICLE

    Elaboration of Materials with Functionality Gradients by Assembly of Chitosan-Collagen Microspheres Produced by Microfluidics

    David Azria1,2, Raluca Guermache1,2, Sophie Raisin1, Sébastien Blanquer1, Frédéric Gobeaux3, Marie Morille1, Emmanuel Belamie1,2,*

    Journal of Renewable Materials, Vol.6, No.3, pp. 314-324, 2018, DOI:10.7569/JRM.2017.634186

    Abstract Biopolymers extracted from renewable resources like chitosan and collagen exhibit interesting properties for the elaboration of materials designed for tissue engineering applications, among which are their hydrophilicity, biocompatibility and biodegradability. In many cases, functional recovery of an injured tissue or organ requires oriented cell outgrowth, which is particularly critical for nerve regeneration. Therefore, there is a growing interest for the elaboration of materials exhibiting functionalization gradients able to guide cells. Here, we explore an original way of elaborating such gradients by assembling particles from a library of functionalized microspheres. We propose a simple process to prepare chitosan-collagen hybrid microspheres by… More >

  • Open Access

    ARTICLE

    Chitosan-g-PMMA/Kaolin Bionanocomposites for Use in Bioadhesive Bone-Cement Implants

    Arun Kumar Pradhan1,2*, Prafulla Kumar Sahoo1, Pradeep Kumar Rana2

    Journal of Renewable Materials, Vol.5, No.5, pp. 371-379, 2017, DOI:10.7569/JRM.2017.634129

    Abstract Chitosan grafted with poly(methyl-methacrylate) (PMMA) and adsorbed with kaolin functionalized as bioadhesive was prepared via emulsion polymerization technique and physiochemically characterized as a bone-graft substitute. The so prepared grafted bioactive bone cement (BBC) bionanocomposites (BNCs), chitosan-g-PMMA/kaolin, was characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analysis, field-emission scanning electron microscopy (FESEM) and thermogravimetric analysis (TGA). The water uptake, retention ability and the nanosize particle arrangement in the polymeric BBC-BNCs were studied along with the mechanical and biodegradation properties. These preliminary investigations of the BNCs will open the door for their use in bioadhesive bone-cement implants in the future. More >

Displaying 21-30 on page 3 of 34. Per Page