Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Identifying Severity of COVID-19 Medical Images by Categorizing Using HSDC Model

    K. Ravishankar*, C. Jothikumar

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 613-635, 2023, DOI:10.32604/csse.2023.038343 - 26 May 2023

    Abstract Since COVID-19 infections are increasing all over the world, there is a need for developing solutions for its early and accurate diagnosis is a must. Detection methods for COVID-19 include screening methods like Chest X-rays and Computed Tomography (CT) scans. More work must be done on preprocessing the datasets, such as eliminating the diaphragm portions, enhancing the image intensity, and minimizing noise. In addition to the detection of COVID-19, the severity of the infection needs to be estimated. The HSDC model is proposed to solve these problems, which will detect and classify the severity of… More >

  • Open Access

    ARTICLE

    Chicken Swarm Optimization with Deep Learning Based Packaged Rooftop Units Fault Diagnosis Model

    G. Anitha1, N. Supriya2, Fayadh Alenezi3, E. Laxmi Lydia4, Gyanendra Prasad Joshi5, Jinsang You6,*

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 221-238, 2023, DOI:10.32604/csse.2023.036479 - 26 May 2023

    Abstract Rooftop units (RTUs) were commonly employed in small commercial buildings that represent that can frequently do not take the higher level maintenance that chillers receive. Fault detection and diagnosis (FDD) tools can be employed for RTU methods to ensure essential faults are addressed promptly. In this aspect, this article presents an Optimal Deep Belief Network based Fault Detection and Classification on Packaged Rooftop Units (ODBNFDC-PRTU) model. The ODBNFDC-PRTU technique considers fault diagnosis as a multi-class classification problem and is handled using DL models. For fault diagnosis in RTUs, the ODBNFDC-PRTU model exploits the deep belief More >

  • Open Access

    ARTICLE

    Wind Speed Prediction Using Chicken Swarm Optimization with Deep Learning Model

    R. Surendran1,*, Youseef Alotaibi2, Ahmad F. Subahi3

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3371-3386, 2023, DOI:10.32604/csse.2023.034465 - 03 April 2023

    Abstract High precision and reliable wind speed forecasting have become a challenge for meteorologists. Convective events, namely, strong winds, thunderstorms, and tornadoes, along with large hail, are natural calamities that disturb daily life. For accurate prediction of wind speed and overcoming its uncertainty of change, several prediction approaches have been presented over the last few decades. As wind speed series have higher volatility and nonlinearity, it is urgent to present cutting-edge artificial intelligence (AI) technology. In this aspect, this paper presents an intelligent wind speed prediction using chicken swarm optimization with the hybrid deep learning (IWSP-CSODL)… More >

  • Open Access

    ARTICLE

    Genetic-Chicken Swarm Algorithm for Minimizing Energy in Wireless Sensor Network

    A. Jameer Basha1, S. Aswini1, S. Aarthini1, Yunyoung Nam2,*, Mohamed Abouhawwash3,4

    Computer Systems Science and Engineering, Vol.44, No.2, pp. 1451-1466, 2023, DOI:10.32604/csse.2023.025503 - 15 June 2022

    Abstract Wireless Sensor Network (WSN) technology is the real-time application that is growing rapidly as the result of smart environments. Battery power is one of the most significant resources in WSN. For enhancing a power factor, the clustering techniques are used. During the forward of data in WSN, more power is consumed. In the existing system, it works with Load Balanced Clustering Method (LBCM) and provides the lifespan of the network with scalability and reliability. In the existing system, it does not deal with end-to-end delay and delivery of packets. For overcoming these issues in WSN,… More >

Displaying 1-10 on page 1 of 4. Per Page