Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    Explainable Conformer Network for Detection of COVID-19 Pneumonia from Chest CT Scan: From Concepts toward Clinical Explainability

    Mohamed Abdel-Basset1, Hossam Hawash1, Mohamed Abouhawwash2,3,*, S. S. Askar4, Alshaimaa A. Tantawy1

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1171-1187, 2024, DOI:10.32604/cmc.2023.044425 - 30 January 2024

    Abstract The early implementation of treatment therapies necessitates the swift and precise identification of COVID-19 pneumonia by the analysis of chest CT scans. This study aims to investigate the indispensable need for precise and interpretable diagnostic tools for improving clinical decision-making for COVID-19 diagnosis. This paper proposes a novel deep learning approach, called Conformer Network, for explainable discrimination of viral pneumonia depending on the lung Region of Infections (ROI) within a single modality radiographic CT scan. Firstly, an efficient U-shaped transformer network is integrated for lung image segmentation. Then, a robust transfer learning technique is introduced… More >

  • Open Access

    REVIEW

    A Systematic Literature Review of Deep Learning Algorithms for Segmentation of the COVID-19 Infection

    Shroog Alshomrani*, Muhammad Arif, Mohammed A. Al Ghamdi

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5717-5742, 2023, DOI:10.32604/cmc.2023.038059 - 29 April 2023

    Abstract Coronavirus has infected more than 753 million people, ranging in severity from one person to another, where more than six million infected people died worldwide. Computer-aided diagnostic (CAD) with artificial intelligence (AI) showed outstanding performance in effectively diagnosing this virus in real-time. Computed tomography is a complementary diagnostic tool to clarify the damage of COVID-19 in the lungs even before symptoms appear in patients. This paper conducts a systematic literature review of deep learning methods for classifying the segmentation of COVID-19 infection in the lungs. We used the methodology of systematic reviews and meta-analyses (PRISMA) More >

  • Open Access

    ARTICLE

    Residual Feature Attentional Fusion Network for Lightweight Chest CT Image Super-Resolution

    Kun Yang1,2, Lei Zhao1, Xianghui Wang1, Mingyang Zhang1, Linyan Xue1,2, Shuang Liu1,2, Kun Liu1,2,3,*

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5159-5176, 2023, DOI:10.32604/cmc.2023.036401 - 29 April 2023

    Abstract The diagnosis of COVID-19 requires chest computed tomography (CT). High-resolution CT images can provide more diagnostic information to help doctors better diagnose the disease, so it is of clinical importance to study super-resolution (SR) algorithms applied to CT images to improve the resolution of CT images. However, most of the existing SR algorithms are studied based on natural images, which are not suitable for medical images; and most of these algorithms improve the reconstruction quality by increasing the network depth, which is not suitable for machines with limited resources. To alleviate these issues, we propose… More >

  • Open Access

    ARTICLE

    Multi-Features Disease Analysis Based Smart Diagnosis for COVID-19

    Sirisati Ranga Swamy1, S. Phani Praveen2, Shakeel Ahmed3,*, Parvathaneni Naga Srinivasu4, Abdulaziz Alhumam3

    Computer Systems Science and Engineering, Vol.45, No.1, pp. 869-886, 2023, DOI:10.32604/csse.2023.029822 - 16 August 2022

    Abstract Coronavirus 2019 (COVID -19) is the current global buzzword, putting the world at risk. The pandemic’s exponential expansion of infected COVID-19 patients has challenged the medical field’s resources, which are already few. Even established nations would not be in a perfect position to manage this epidemic correctly, leaving emerging countries and countries that have not yet begun to grow to address the problem. These problems can be solved by using machine learning models in a realistic way, such as by using computer-aided images during medical examinations. These models help predict the effects of the disease… More >

  • Open Access

    ARTICLE

    COVID-19 Imaging Detection in the Context of Artificial Intelligence and the Internet of Things

    Xiaowei Gu1,#, Shuwen Chen1,2,#,*, Huisheng Zhu1, Mackenzie Brown3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.132, No.2, pp. 507-530, 2022, DOI:10.32604/cmes.2022.018948 - 15 June 2022

    Abstract Coronavirus disease 2019 brings a huge burden on the medical industry all over the world. In the background of artificial intelligence (AI) and Internet of Things (IoT) technologies, chest computed tomography (CT) and chest X-ray (CXR) scans are becoming more intelligent, and playing an increasingly vital role in the diagnosis and treatment of diseases. This paper will introduce the segmentation of methods and applications. CXR and CT diagnosis of COVID-19 based on deep learning, which can be widely used to fight against COVID-19. More >

  • Open Access

    ARTICLE

    An Efficient Method for Covid-19 Detection Using Light Weight Convolutional Neural Network

    Saddam Bekhet1,*, Monagi H. Alkinani2, Reinel Tabares-Soto3, M. Hassaballah4

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 2475-2491, 2021, DOI:10.32604/cmc.2021.018514 - 21 July 2021

    Abstract The COVID-19 pandemic is a significant milestone in the modern history of civilization with a catastrophic effect on global wellbeing and monetary. The situation is very complex as the COVID-19 test kits are limited, therefore, more diagnostic methods must be developed urgently. A significant initial step towards the successful diagnosis of the COVID-19 is the chest X-ray or Computed Tomography (CT), where any chest anomalies (e.g., lung inflammation) can be easily identified. Most hospitals possess X-ray or CT imaging equipments that can be used for early detection of COVID-19. Motivated by this, various artificial intelligence… More >

  • Open Access

    ARTICLE

    A Novel Technique for Early Detection of COVID-19

    Mohammad Yamin1,*, Adnan Ahmed Abi Sen2, Zenah Mahmoud AlKubaisy1, Rahaf Almarzouki1

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 2283-2298, 2021, DOI:10.32604/cmc.2021.017433 - 13 April 2021

    Abstract COVID-19 is a global pandemic disease, which results from a dangerous coronavirus attack, and spreads aggressively through close contacts with infected people and artifacts. So far, there is not any prescribed line of treatment for COVID-19 patients. Measures to control the disease are very limited, partly due to the lack of knowledge about technologies which could be effectively used for early detection and control the disease. Early detection of positive cases is critical in preventing further spread, achieving the herd immunity, and saving lives. Unfortunately, so far we do not have effective toolkits to diagnose… More >

Displaying 1-10 on page 1 of 7. Per Page