Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (209)
  • Open Access

    ARTICLE

    Experimental Characterization of MCF-10A Normal Cells Using AFM: Comparison with MCF-7 Cancer Cells

    Moharam Habibnejad Korayem1,*, Zahra Rastegar2

    Molecular & Cellular Biomechanics, Vol.16, No.2, pp. 109-122, 2019, DOI:10.32604/mcb.2019.04706

    Abstract The mechanical properties of single cells have been recently identified as the basis of an emerging approach in medical applications since they are closely related to the biological processes of cells and human health conditions. The problem in hand is how to measure mechanical properties in order to obtain them more accurately and applicably. Some of the cell’s properties such as elasticity module and adhesion have been measured before using various methods; nevertheless, comprehensive tests for two healthy and cancerous cells have not been performed simultaneously. As a Nanoscale device, AFM has been used for some biological cells, however for… More >

  • Open Access

    ARTICLE

    Characterization of the Chondrocyte Actin Cytoskeleton in Living Three-Dimensional Culture: Response to Anabolic and Catabolic Stimuli

    Dominik R. Haudenschild∗,†, Jianfen Chen∗,†, Nikolai Steklov, Martin K. Lotz*, Darryl D. D’Lima∗,‡

    Molecular & Cellular Biomechanics, Vol.6, No.3, pp. 135-144, 2009, DOI:10.3970/mcb.2009.006.135

    Abstract The actin cytoskeleton is a dynamic network required for intracellular transport, signal transduction, movement, attachment to the extracellular matrix, cellular stiffness and cell shape. Cell shape and the actin cytoskeletal configuration are linked to chondrocyte phenotype with regard to gene expression and matrix synthesis. Historically, the chondrocyte actin cytoskeleton has been studied after formaldehyde fixation - precluding real-time measurements of actin dynamics, or in monolayer cultured cells. Here we characterize the actin cytoskeleton of living low-passage human chondrocytes grown in three-dimensional culture using a stably expressed actin-GFP construct. GFP-actin expression does not substantially alter the production of endogenous actin at… More >

  • Open Access

    ARTICLE

    Topological Characterization of Book Graph and Stacked Book Graph

    Raghisa Khalid1, Nazeran Idrees1,*, Muhammad Jawwad Saif2

    CMC-Computers, Materials & Continua, Vol.60, No.1, pp. 41-54, 2019, DOI:10.32604/cmc.2019.06554

    Abstract Degree based topological indices are being widely used in computer-aided modeling, structural activity relations, and drug designing to predict the underlying topological properties of networks and graphs. In this work, we compute the certain important degree based topological indices like Randic index, sum connectivity index, ABC index, ABC4 index, GA index and GA5 index of Book graph Bn and Stacked book graph Bm,n. The results are analyzed by using edge partition, and the general formulas are derived for the above-mentioned families of graphs. More >

  • Open Access

    ARTICLE

    Transient Response in Cross-Ply Laminated Cylinders and Its Application to Reconstruction of Elastic Constants

    X. Han1,2,3, G. R. Liu1,2, G. Y. Li 1

    CMC-Computers, Materials & Continua, Vol.1, No.1, pp. 39-50, 2004, DOI:10.3970/cmc.2004.001.039

    Abstract An efficient hybrid numerical method is presented for investigating transient response of cross-ply laminated axisymmetric cylinders subjected to an impact load. In this hybrid numerical method, the laminated cylinder is divided into layered cylindrical elements in the thickness direction. The Hamilton principle is used to develop governing equations of the structure. The displacement response is determined by employing the Fourier transformations and the modal analysis. Numerical examples for analyzing transient waves have been provided in axisymmetric laminated cylindrical structures, both for thin cylindrical shells and thick cylinders.
    A computational inverse technique is also presented for reconstructing elastic constants of… More >

  • Open Access

    ARTICLE

    Modeling the Response of 3D Textile Composites under Compressive Loads to Predict Compressive Strength

    M. Pankow1, A.M. Waas2, C.F. Yen3

    CMC-Computers, Materials & Continua, Vol.32, No.2, pp. 81-106, 2012, DOI:10.3970/cmc.2012.032.081

    Abstract The compression response of 3D woven textile composites (3DWC) that consist of glass fiber tows and a polymer matrix material is studied using a combination of experiments and finite element based analyses. A previous study reported by the authors consisted of an experimental investigation of 3DWC under high strain rate loading, Pankow, Salvi, Waas, Yen, and Ghiorse (2011). Those experimental results were explained by using the finite element method to analyze the high rate deformation response of representative volume elements (RVEs) of the 3DWC, Pankow, Waas, Yen, and Ghiorse (2012). In this paper, the same modeling strategy is used to… More >

  • Open Access

    ARTICLE

    Fracture Analysis of High strength and Ultra high strength Concrete beams by using Finite Element Method

    A. Ramachandra Murthy1, Nagesh R. Iyer1, B.K. Raghu Prasad2

    CMC-Computers, Materials & Continua, Vol.30, No.2, pp. 177-194, 2012, DOI:10.3970/cmc.2012.030.177

    Abstract This paper presents the details of nonlinear finite element analysis (FEA) of three point bending specimens made up of high strength concrete (HSC, HSC1) and ultra high strength concrete (UHSC). Brief details about characterization and experimentation of HSC, HSC1 and UHSC have been provided. Cracking strength criterion has been used for simulation of crack propagation by conducting nonlinear FEA. The description about FEA using crack strength criterion has been outlined. Bi-linear tension softening relation has been used for modeling the cohesive stresses ahead of the crack tip. Numerical studies have been carried out on fracture analysis of three point bending… More >

  • Open Access

    ARTICLE

    Solution of Liouville's Equation for Uncertainty Characterization of the Main Problem in Satellite Theory

    Ryan Weisman3, Manoranjan Majji4, Kyle T. Alfriend5

    CMES-Computer Modeling in Engineering & Sciences, Vol.111, No.3, pp. 269-304, 2016, DOI:10.3970/cmes.2016.111.269

    Abstract This paper presents a closed form solution to Liouville's equation governing the evolution of the probability density function associated with the motion of a body in a central force field and subject to J2. It is shown that the application of transformation of variables formula for mapping uncertainties is equivalent to the method of characteristics for computing the time evolution of the probability density function that forms the solution of the Liouville's partial differential equation. The insights derived from the nature of the solution to Liouville's equation are used to reduce the dimensionality of uncertainties in orbital element space. It… More >

  • Open Access

    ARTICLE

    Characterization and modeling of the multiscale pore structures for porous materials

    X.F. Guan1, X. Liu2, J.Z. Cui3

    CMES-Computer Modeling in Engineering & Sciences, Vol.91, No.6, pp. 425-444, 2013, DOI:10.3970/cmes.2013.091.425

    Abstract In this paper, a stochastic geometrical modeling method for reconstructing three dimensional multiscale pore structures of porous materials is presented. In this method, the pore structure in porous materials is represented by a random but spatially correlated pore-network, in which the results of the Mercury Intrusion Porosimetry (MIP) experiment are used as the basic input information. Beside that, based on the Monte Carlo techniques, an effective computer generation algorithm is developed, and the quantities to evaluate the properties of porous materials are defined and described. Furthermore, numerical implementations are conducted based on experimental data afterwards. This method can be used… More >

  • Open Access

    ARTICLE

    Fatigue Crack Growth Study and Remaining Life Assessment of High Strength and Ultra High Strength Concrete Beams

    A. Ramachandra Murthy1, Nagesh R. Iyer1, B.K. Raghu Prasad2

    CMES-Computer Modeling in Engineering & Sciences, Vol.89, No.6, pp. 459-480, 2012, DOI:10.3970/cmes.2012.089.459

    Abstract This paper presents the details of crack growth study and remaining life assessment of concrete specimens made up of high strength concrete (HSC, HSC1) and ultra high strength concrete (UHSC). Flexural fatigue tests have been conducted on HSC, HSC1 and UHSC beams under constant amplitude loading with a stress ratio of 0.2. It is observed from the studies that (i) the failure patterns of HSC1 and UHSC beams indicate their ductility as the member was intact till the crack propagated up to 90% of the beam depth and (ii) the remaining life decreases with increase of notch depth (iii) the… More >

  • Open Access

    ARTICLE

    Multiscale Characterization of Human Cortical Bone

    MC. Ho Ba Tho1, PE Mazeran2, K El Kirat1, S.F. Bensamoun1

    CMES-Computer Modeling in Engineering & Sciences, Vol.87, No.6, pp. 557-578, 2012, DOI:10.3970/cmes.2012.087.557

    Abstract Mechanical properties of cortical human bone have been investigated for more than four decades. Numerous experimental investigations on bone characterization were performed ; mechanical, vibrational, acoustical testing and morphological, physico-chemical investigations. Due to the techniques, different levels of investigation were performed and subsequently quantitative parameters are concerning different level of structure of bone (organ, tissue,... ). According to our knowledge, few investigations were performed simultaneously on mechanical, morphological and physico-chemical properties of bone. The objectives of the present study were to investigate the influence of multiscale structural characteristics of the bone tissue on its mechanical behavior and to provide some… More >

Displaying 191-200 on page 20 of 209. Per Page