Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (521)
  • Open Access

    ARTICLE

    Spikelet Filling Characteristics in Early-Season Rice Experiencing High Temperatures during Ripening

    Jiazhou Li1,2, Mingyu Zhang1, Xing Li1,3, Fangbo Cao1,2, Jiana Chen1,2, Weiqin Wang1,2, Huabin Zheng1,2, Min Huang1,2,4,*

    Phyton-International Journal of Experimental Botany, Vol.95, No.1, 2026, DOI:10.32604/phyton.2025.075255 - 30 January 2026

    Abstract Spikelet filling characteristics in early-season rice in southern China may be distinctive due to its exposure to high temperatures during the ripening period. However, limited information is currently available on these characteristics. This study aimed to characterize spikelet filling in early-season rice and identify the key factors contributing to its improvement. Field experiments were conducted over two years (2021 and 2022) to mainly investigate the proportions of fully-filled, partially-filled, and empty spikelets, along with the biomass-fertilized spikelet ratio and harvest index, in 11 early-season rice varieties. The results revealed significant varietal variation in spikelet filling,… More >

  • Open Access

    ARTICLE

    Ab initio Investigation of Structural Units and Raman Vibrational Characteristics in Ge-Se-Te Glasses

    Xuecai Han, Yilin Tong, Jiaqi Bao, Kan Yu*

    Chalcogenide Letters, Vol.23, No.1, 2026, DOI:10.32604/cl.2026.075604 - 26 January 2026

    Abstract Chalcogenide glasses in the Ge-Se-Te system possess wide infrared transparency and strong optical nonlinearity, yet the microscopic origin of their vibrational behavior remains unclear. Using ab initio calculations, we analyzed Raman-active modes in GeSexTe4−x (x = 0–4) tetrahedra, edge-sharing tetrahedra, and ethane-like Ge2Se2xTe6−2x (x = 0–3) clusters. For GeSexTe4−x (x = 0–4) tetrahedra, the symmetric stretching vibrations exhibit two families: Ge-Se-dominated and Ge-Te-dominated modes, both showing monotonic redshifts as the number of same-type bonds increases. In edge-sharing tetrahedra, the Ge-Ch-Ge-Ch (Ch = Se or Te) four-membered-ring breathing frequency decreases with higher Te content, and a comparable softening is More >

  • Open Access

    ARTICLE

    H/V Spectral Ratio Reveals Seismic Response of Base-Isolated Large-Span High-Rise in Beijing

    Zhangdi Xie1,2,*, Cantao Zhuang1, Yong Wu1, Linghui Niu1, Jianming Zhao3

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.070531 - 08 January 2026

    Abstract This study employed tri-component continuous monitoring data from 10 measurement points on both sides of a base isolation layer in the basement of a large-span high-rise building in Beijing, as well as from a free-field station and roof frame, during a Mw 5.5 magnitude earthquake in Pingyuan, Shandong, in 2023. The H/V spectral ratio method was used to evaluate the structural dynamic response characteristics of the building and analyze the regulatory effect of the base-isolation layer on seismic waves. The results indicate that during the earthquake, the peak frequency of the free-field and the measurement points… More >

  • Open Access

    ARTICLE

    Investigation of the Influence of Variations in Thickness and Concentration on the Optoelectronic Characteristics of p-CuI/n-InSe Photodetector

    Naeemah A. Aswad, Ayed N. Saleh*

    Chalcogenide Letters, Vol.22, No.12, pp. 1019-1029, 2025, DOI:10.15251/CL.2025.2212.1019 - 06 December 2025

    Abstract The SCAPS-1D software was used to simulate a p–CuI/n–InSe photodetector at 300 K with AM1.5G light. The simulation results showed that, with a quantum efficiency of 97.6% at 800 nm and a responsivity of 0.67 A/W, the ideal absorber layer thickness of 0.8 µm produced the highest overall performance. The specific detectivity was enhanced to 2.5 × 1015 cm·Hz1/2 ·W−3 and the dark current was decreased by increasing the InSe carrier concentration from 1 × 1015 cm−3 to 3 × 1015 cm−3 . These findings show that the CuI/InSe heterojunction’s broadband response, strong responsivity, and low dark current make More >

  • Open Access

    ARTICLE

    Identifying the Causative Pathogen of Rosa roxburghii Tratt. Fruit Rot and Laboratory Screening for Control Agents

    Di Wu1, Chunguang Ren1, Liangliang Li1, Chongpei Zheng2, Wenwen Su1,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.12, pp. 4079-4090, 2025, DOI:10.32604/phyton.2025.072856 - 29 December 2025

    Abstract To identify the pathogen responsible for fruit rot disease in Rosa roxburghii Tratt. from Guiding County, Guizhou Province, China, diseased fruit samples were collected. The pathogen was isolated, purified, and identified through morphological, molecular, and pathogenic analyses. Subsequently, its biological characteristics were evaluated. Furthermore, to determine the agent with the strongest toxicity against the identified pathogen, the antifungal activity of six chemical and biological agents was evaluated through indoor toxicity assays. Finally, Neopestalotiopsis clavispora was identified as the pathogen responsible for fruit rot disease in R. roxburghii Tratt. The diameter of the pathogen grown under different carbon and… More >

  • Open Access

    ARTICLE

    Drying Characteristics and Process Optimization of Banana Slices Using Hot Air-Infrared Combined Drying

    Guofeng Han, Chenxi Luo, Xin Liu, Yuanyuan Li, Yuling Cheng, Shuai Huang, Dan Huang*

    Frontiers in Heat and Mass Transfer, Vol.23, No.6, pp. 1981-1999, 2025, DOI:10.32604/fhmt.2025.074593 - 31 December 2025

    Abstract Bananas are highly perishable after harvest, and processing them into dried products is a crucial approach to reducing losses and adding their economic values. To address the inefficiency and prolonged duration of traditional hot air drying (HAD) and the quality inconsistency associated with single infrared drying (IRD), this study proposed a novel hot air-infrared combined drying (HAD-IRD) strategy. The effects of HAD, IRD, and HAD-IRD on the drying kinetics, color, rehydration capacity, moisture diffusion mechanism, and sensory quality of banana slices were systematically investigated. The parameters of the combined drying process were optimized using an L9(33)… More >

  • Open Access

    ARTICLE

    Characteristics of Food Packaging Bioplastics with Nanocrystalline Cellulose (NCC) from Oil Palm Empty Fruit Bunches (OPEFB) as Reinforcement

    Maryam1,*, Rahayu Puji2, Luthfi Muhammad Zulfikar2, Ikhsandy Ferry2, Nadiyah Khairun1, Hidayat3, Ilyas Rushdan Ahmad4, Syafri Edi5

    Journal of Renewable Materials, Vol.13, No.12, pp. 2431-2451, 2025, DOI:10.32604/jrm.2025.02024-0063 - 23 December 2025

    Abstract The development of the bioplastics industry addresses critical issues such as environmental pollution and food safety concerns. However, the industrialization of bioplastics remains underdeveloped due to challenges such as high production costs and suboptimal material characteristics. To enhance these characteristics, this study investigates bioplastics reinforced with Nanocrystalline Cellulose (NCC) derived from Oil Palm Empty Fruit Bunches (OPEFB), incorporating dispersing agents. The research employs a Central Composite Design from the Response Surface Methodology (RSM) with two factors: the type of dispersing agent (KCl and NaCl) and the NCC concentration from OPEFB (1%–5%), along with the dispersing… More >

  • Open Access

    ARTICLE

    Pore Pressure Evolution and F-T Fatigue of Concrete: A Coupled THM-F Phase-Field Modeling Approach

    Siwei Zhang, Xiaozhou Xia*, Xin Gu, Meilin Zong, Qing Zhang*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3243-3278, 2025, DOI:10.32604/cmes.2025.073841 - 23 December 2025

    Abstract This study presents a coupled thermo-hydro-mechanical-fatigue (THM-F) model, developed based on variational phase-field fatigue theory, to simulate the freeze-thaw (F-T) damage process in concrete. The fracture phase-field model incorporates the F-T fatigue mechanism driven by energy dissipation during the free energy growth stage. Using microscopic inclusion theory, we derive an evolution model of pore size distribution (PSD) for concrete under F-T cycles by treating pore water as columnar inclusions. Drawing upon pore ice crystal theory, calculation models that account for concrete PSD characteristics are established to determine ice saturation, permeability coefficient, and pore pressure. To… More >

  • Open Access

    ARTICLE

    Structural and Vibration Characteristics of Rotating Packed Beds System for Carbon Capture Applications Using Finite Element Method

    Yunjun Lee1, Sanggyu Cheon2, Woo Chul Chung1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3381-3403, 2025, DOI:10.32604/cmes.2025.073729 - 23 December 2025

    Abstract The application of carbon capture systems on ships is technically constrained by limited onboard space and the weight of the conventional absorption tower. The rotating packed bed (RPB) has emerged as a promising alternative due to its small footprint and high mass transfer performance. However, despite its advantages, the structural and vibration stability of RPBs at high rotational speed remains insufficiently studied, and no international design standards currently exist for RPBs. To address this gap, this study performed a comprehensive finite element analysis (FEA) using ANSYS to investigate the structural and dynamic characteristics of an… More >

  • Open Access

    ARTICLE

    Numerical Exploration on Load Transfer Characteristics and Optimization of Multi-Layer Composite Pavement Structures Based on Improved Transfer Matrix Method

    Guo-Zhi Li1, Hua-Ping Wang1,2,*, Si-Kai Wang1, Jing-Cheng Zhou1, Ping Xiang3,4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3165-3195, 2025, DOI:10.32604/cmes.2025.072750 - 23 December 2025

    Abstract Transportation structures such as composite pavements and railway foundations typically consist of multi-layered media designed to withstand high bearing capacity. A theoretical understanding of load transfer mechanisms in these multi-layer composites is essential, as it offers intuitive insights into parametric influences and facilitates enhanced structural performance. This paper employs an improved transfer matrix method to address the limitations of existing theoretical approaches for analyzing multi-layer composite structures. By establishing a two-dimensional composite pavement model, it investigates load transfer characteristics and validates the accuracy through finite element simulation. The proposed method offers a straightforward analytical approach… More >

Displaying 1-10 on page 1 of 521. Per Page