Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Remote Sensing Image Encryption Using Optimal Key Generation-Based Chaotic Encryption

    Mesfer Al Duhayyim1,*, Fatma S. Alrayes2, Saud S. Alotaibi3, Sana Alazwari4, Nasser Allheeib5, Ayman Yafoz6, Raed Alsini6, Amira Sayed A. Aziz7

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3209-3223, 2023, DOI:10.32604/csse.2023.034185 - 03 April 2023

    Abstract The Internet of Things (IoT) offers a new era of connectivity, which goes beyond laptops and smart connected devices for connected vehicles, smart homes, smart cities, and connected healthcare. The massive quantity of data gathered from numerous IoT devices poses security and privacy concerns for users. With the increasing use of multimedia in communications, the content security of remote-sensing images attracted much attention in academia and industry. Image encryption is important for securing remote sensing images in the IoT environment. Recently, researchers have introduced plenty of algorithms for encrypting images. This study introduces an Improved… More >

  • Open Access

    ARTICLE

    Hybrid Watermarking and Encryption Techniques for Securing Medical Images

    Amel Ali Alhussan1,*, Hanaa A. Abdallah2, Sara Alsodairi2, Abdelhamied A. Ateya3

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 403-416, 2023, DOI:10.32604/csse.2023.035048 - 20 January 2023

    Abstract Securing medical data while transmission on the network is required because it is sensitive and life-dependent data. Many methods are used for protection, such as Steganography, Digital Signature, Cryptography, and Watermarking. This paper introduces a novel robust algorithm that combines discrete wavelet transform (DWT), discrete cosine transform (DCT), and singular value decomposition (SVD) digital image-watermarking algorithms. The host image is decomposed using a two-dimensional DWT (2D-DWT) to approximate low-frequency sub-bands in the embedding process. Then the sub-band low-high (LH) is decomposed using 2D-DWT to four new sub-bands. The resulting sub-band low-high (LH1) is decomposed using 2D-DWT… More >

Displaying 1-10 on page 1 of 2. Per Page