Uddagiri Sirisha1,*, Chanumolu Kiran Kumar2, Sujatha Canavoy Narahari3, Parvathaneni Naga Srinivasu4,5,6
CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 1757-1810, 2025, DOI:10.32604/cmc.2024.059715
- 17 February 2025
Abstract The growing spectrum of Generative Adversarial Network (GAN) applications in medical imaging, cyber security, data augmentation, and the field of remote sensing tasks necessitate a sharp spike in the criticality of review of Generative Adversarial Networks. Earlier reviews that targeted reviewing certain architecture of the GAN or emphasizing a specific application-oriented area have done so in a narrow spirit and lacked the systematic comparative analysis of the models’ performance metrics. Numerous reviews do not apply standardized frameworks, showing gaps in the efficiency evaluation of GANs, training stability, and suitability for specific tasks. In this work,… More >