Zeyad Ghaleb Al-Mekhlafi1, Ebrahim Mohammed Senan2, Taha H. Rassem3, Badiea Abdulkarem Mohammed4,5,*, Nasrin M. Makbol5, Adwan Alownie Alanazi1, Tariq S. Almurayziq1, Fuad A. Ghaleb6
CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 775-796, 2022, DOI:10.32604/cmc.2022.024492
- 24 February 2022
Abstract Stroke and cerebral haemorrhage are the second leading causes of death in the world after ischaemic heart disease. In this work, a dataset containing medical, physiological and environmental tests for stroke was used to evaluate the efficacy of machine learning, deep learning and a hybrid technique between deep learning and machine learning on the Magnetic Resonance Imaging (MRI) dataset for cerebral haemorrhage. In the first dataset (medical records), two features, namely, diabetes and obesity, were created on the basis of the values of the corresponding features. The t-Distributed Stochastic Neighbour Embedding algorithm was applied to… More >