Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (42)
  • Open Access

    PROCEEDINGS

    Microfluidic Fabrication of Various Ceramic Microparticles

    Chenchen Zhou1,2, Shuaishuai Liang3, Bin Qi3, Chenxu Liu2, Nam-Joon Cho1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.012380

    Abstract Micro tools/parts are attracting increasing attention due to the miniaturization evolutionary tendency in many fields, whose functionalities are critically determined by their materials and shapes [1- 5]. Sharp-edged ceramic microparticles have great prospects to be used as micromachining tools and micro components. However, it remains a huge challenge to fabricate nontransparent ceramic sharp-edged microparticles in a high-throughput way while taking their shape complexity, precision, and strength into account [6-8]. Herein, we present an online mixing and in-situ polymerization strategy: “one-pot microfluidic fabrication” along with two novel microfluidic device fabrication methods: “groove & tongue” and sliding More >

  • Open Access

    ARTICLE

    Paraelectric Doping Simultaneously Improves the Field Frequency Adaptability and Dielectric Properties of Ferroelectric Materials: A Phase-Field Study

    Zhi Wang1, Jinming Cao1, Zhonglei Liu1, Yuhong Zhao1,2,3,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 213-228, 2024, DOI:10.32604/cmc.2024.055169 - 15 October 2024

    Abstract Recent years, the polarization response of ferroelectrics has been entirely studied. However, it is found that the polarization may disappear gradually with the continually applied of electric field. In this paper, taking K0.48Na0.52NbO3(KNN) as an example, it was demonstrated that the residual polarization began to decrease when the electric field frequency increased to a certain extent using a phase-field methods. The results showed that the content of out-of-plane domains increased first and then decreased with the increase of applied electric field frequency, the maximum polarization disappeared at high frequencies, and the hysteresis loop became elliptical. In More >

  • Open Access

    PROCEEDINGS

    Dynamic Crack Propagation of Ceramic Materials under High Temperature Thermal Shock

    Biao Xia1,2, Changxing Zhang2,3,*, Zhanli Liu2, Xue Feng2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.012764

    Abstract Ceramics has become one of the most promising candidate materials in the aerospace field due to its advantages of high melting point, corrosion resistance, wear resistance, and high-temperature stability [1,2]. However, the inherent brittleness of ceramics makes it prone to thermal shock failure under high-temperature extreme environments, which can lead to sudden catastrophic accidents in the structure [3-6]. This paper takes the high-temperature resistant ceramic materials in the aerospace industry as the research object. And the dynamic crack propagation mechanism is analyzed. Through the computational method based on the extended finite element method (XFEM), the… More >

  • Open Access

    PROCEEDINGS

    Design and Fabrication of Porous Lithium-Containing Ceramic Tritium Breeders for Fusion Reactors

    Jili Cai1, Junyi Zhou1, Hangyu Chen1, Liang Huang1, Wenming Jiang1, Jie Liu1, Zhongwei Li1, Chao Cai1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.011946

    Abstract Effectively obtaining tritium is one of the essential issues to realize commercial and controlled nuclear fusion [1]. Conventional lithium-containing ceramic tritium breeders with pebble bed configurations in fusion reactors have shown insurmountable structural drawbacks weakening tritium extraction, including inherently low packing fractions, extensive stress concentrations, and low thermal conductivity. Therefore, extensive efforts have been devoted to enhancing tritium extraction by improving the design of tritium breeders and addressing structural drawbacks [2-4]. In this study, porous block configurations were proposed to replace conventional pebble bed configurations for the ceramic tritium breeder. Utilizing fluid-solid coupled heat transfer… More >

  • Open Access

    PROCEEDINGS

    A Modified Rate-Dependent Peridynamic Model with Rotation Effect for Dynamic Mechanical Behavior of Ceramic Materials

    Yaxun Liu1,2, Lisheng Liu1,2,*, Hai Mei1,2, Qiwen Liu1,2, Xin Lai1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09007

    Abstract As a mathematical expression of the dynamic mechanical behavior, the constitutive model plays an indispensable role in numerical simulations of ceramic materials. The current bond-based peridynamic constitutive models can accurately describe the dynamic mechanical behavior of partial ceramic materials under impact loading, however, the predicted value of the Poisson’s ratio is 0.25, which is not true for most of the known ceramic materials. Herein, based on the existing bond-based peridynamic constitutive model, the current study utilizes the description of tangential bond force and considers the influence of bond force on rotation to accurately predict the… More >

  • Open Access

    ARTICLE

    A Sketch-Based Generation Model for Diverse Ceramic Tile Images Using Generative Adversarial Network

    Jianfeng Lu1,*, Xinyi Liu1, Mengtao Shi1, Chen Cui1,2, Mahmoud Emam1,3

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 2865-2882, 2023, DOI:10.32604/iasc.2023.039742 - 11 September 2023

    Abstract Ceramic tiles are one of the most indispensable materials for interior decoration. The ceramic patterns can’t match the design requirements in terms of diversity and interactivity due to their natural textures. In this paper, we propose a sketch-based generation method for generating diverse ceramic tile images based on a hand-drawn sketches using Generative Adversarial Network (GAN). The generated tile images can be tailored to meet the specific needs of the user for the tile textures. The proposed method consists of four steps. Firstly, a dataset of ceramic tile images with diverse distributions is created and… More >

  • Open Access

    PROCEEDINGS

    Study on Peridynamics Simulation Method of Anti-Penetration of Ceramic/Metal Composite Structures

    Haoran Zhang1, Lisheng Liu2,*, Qiwen Liu2, Xin Lai2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09493

    Abstract Ceramic metal composite structure with high hardness, high bending strength of ceramic materials as the front layer and materials with high tensile strength, high elongation as the backing layer, has excellent penetration resistance. The current numerical methods for studying the penetration resistance of ceramic/metal composite structures under ballistic impact still have many deficiencies. Peridynamics (PD) is a novel nonlocal theory that is well suited for simulations involving damage and fracture behavior. At present, the existing rate-dependent bond-based PD (BB-PD) constitutive model considering the rotation effect and the Johnson-Cook (JC) metal model based on non-ordinary state-based… More >

  • Open Access

    PROCEEDINGS

    Multiscale Modeling for Thermomenchanical Fatigue Damage Analysis and Life Prediction for Woven Ceramic Matrix Composites at Elevated Temperature

    Zhengmao Yang1,*, Junjie Yang2, Yang Chen3, Fulei Jing4

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09229

    Abstract Woven ceramic matrix composites (CMCs), exhibiting excellent thermomechanical properties at high temperatures, are promising as alternative materials to the conventional nickel-based superalloys in the hot section components of aero-engines. Therefore, understanding and predicting the lifetime of CMCs is critical. Fatigue prediction of woven CMCs currently involves long-term and costly testing. A feasible alternative is to use predictive modelling based on a deep understanding of the damage mechanisms. Therefore, this study develops a multiscale analysis modelling method for predicting the fatigue life of CMC materials at high temperature by investigating the thermomechanical fatigue damage evolution. To… More >

  • Open Access

    PROCEEDINGS

    Size Dependent Structures and Properties of Na0.5Bi0.5TiO3-Based Ceramics for Piezoelectric Sensors

    Pan Chen1,2,3, Baojin Chu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09199

    Abstract Generally, film dielectric materials often exhibit size-dependent structure and electric properties. In this work, we demonstrate a similar behavior in bulk Na0.5Bi0.5TiO3 (NBT)-based polycrystalline ceramics. According to the results from X-ray diffraction, the (Na0.5Bi0.5)0.92Ba0.08Ti0.99Mg0.01O2.99 (NBT8M1.0) ceramic showed a complex structure that consists of rhombohedral, tetragonal and cubic symmetries. We found, when decreasing the thickness of a ϕ 10 mm NBT8M1.0 ceramic from 1230 μm to 230 μm, the ceramic showed increased content of cubic symmetry (CC) from 28% to 56%. Meanwhile, the piezoelectric response (d33) increased from 107 pC/N to 134 pC/N and the depolarization temperature (Td) decreased… More >

  • Open Access

    PROCEEDINGS

    The Coupled Thermo-Chemo-Mechanical Peridynamics for ZrB2 Ceramics Ablation Behavior

    Yuanzhe Li1, Qiwen Liu2,*, Lisheng Liu2, Hai Mei2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09500

    Abstract The ablation of ultra-high-temperature ceramics (UTHCs) is a complex physicochemical process including mechanical behavior, temperature effect, and chemical reactions. In order to realize the structural optimization and functional design of ultra-high temperature ceramics, a coupled thermo-chemomechanical bond-based peridynamics (PD) model is proposed based on the ZrB2 ceramics oxidation kinetics model and coupled thermomechanical bond-based peridynamics. Compared with the traditional coupled thermo-mechanical model, the proposed model considers the influence of chemical reaction process on the ablation resistance of ceramic materials. In order to verify the reliability of the proposed model, the thermomechanical coupling model, damage model and… More >

Displaying 1-10 on page 1 of 42. Per Page