Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    Boosting Adversarial Training with Learnable Distribution

    Kai Chen1,2, Jinwei Wang3, James Msughter Adeke1,2, Guangjie Liu1,2,*, Yuewei Dai1,4

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3247-3265, 2024, DOI:10.32604/cmc.2024.046082 - 26 March 2024

    Abstract In recent years, various adversarial defense methods have been proposed to improve the robustness of deep neural networks. Adversarial training is one of the most potent methods to defend against adversarial attacks. However, the difference in the feature space between natural and adversarial examples hinders the accuracy and robustness of the model in adversarial training. This paper proposes a learnable distribution adversarial training method, aiming to construct the same distribution for training data utilizing the Gaussian mixture model. The distribution centroid is built to classify samples and constrain the distribution of the sample features. The… More >

  • Open Access

    ARTICLE

    New Ranking of Generalized Quadrilateral Shape Fuzzy Number Using Centroid Technique

    A. Thiruppathi*, C. K. Kirubhashankar

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 2253-2266, 2023, DOI:10.32604/iasc.2023.033870 - 05 January 2023

    Abstract The output of the fuzzy set is reduced by one for the defuzzification procedure. It is employed to provide a comprehensible outcome from a fuzzy inference process. This page provides further information about the defuzzification approach for quadrilateral fuzzy numbers, which may be used to convert them into discrete values. Defuzzification demonstrates how useful fuzzy ranking systems can be. Our major purpose is to develop a new ranking method for generalized quadrilateral fuzzy numbers. The primary objective of the research is to provide a novel approach to the accurate evaluation of various kinds of fuzzy… More >

  • Open Access

    ARTICLE

    Encephalitis Detection from EEG Fuzzy Density-Based Clustering Model with Multiple Centroid

    Hanan Abdullah Mengash1, Alaaeldin M. Hafez2, Hanan A. Hosni Mahmoud3,*

    Intelligent Automation & Soft Computing, Vol.35, No.3, pp. 3129-3140, 2023, DOI:10.32604/iasc.2023.030836 - 17 August 2022

    Abstract Encephalitis is a brain inflammation disease. Encephalitis can yield to seizures, motor disability, or some loss of vision or hearing. Sometimes, encephalitis can be a life-threatening and proper diagnosis in an early stage is very crucial. Therefore, in this paper, we are proposing a deep learning model for computerized detection of Encephalitis from the electroencephalogram data (EEG). Also, we propose a Density-Based Clustering model to classify the distinctive waves of Encephalitis. Customary clustering models usually employ a computed single centroid virtual point to define the cluster configuration, but this single point does not contain adequate More >

  • Open Access

    ARTICLE

    A Novel Soft Clustering Approach for Gene Expression Data

    E. Kavitha1,*, R. Tamilarasan2, Arunadevi Baladhandapani3, M. K. Jayanthi Kannan4

    Computer Systems Science and Engineering, Vol.43, No.3, pp. 871-886, 2022, DOI:10.32604/csse.2022.021215 - 09 May 2022

    Abstract Gene expression data represents a condition matrix where each row represents the gene and the column shows the condition. Micro array used to detect gene expression in lab for thousands of gene at a time. Genes encode proteins which in turn will dictate the cell function. The production of messenger RNA along with processing the same are the two main stages involved in the process of gene expression. The biological networks complexity added with the volume of data containing imprecision and outliers increases the challenges in dealing with them. Clustering methods are hence essential to… More >

  • Open Access

    ARTICLE

    An Improved DV-Hop Localization Algorithm Based on Selected Anchors

    Jing Wang1, *, Anqi Hou1, Yuanfei Tu1, Hong Yu2

    CMC-Computers, Materials & Continua, Vol.65, No.1, pp. 977-991, 2020, DOI:10.32604/cmc.2020.011003 - 23 July 2020

    Abstract Wireless Sensor Network (WSN) based applications has been extraordinarily helpful in monitoring interested area. Only information of surrounding environment with meaningful geometric information is useful. How to design the localization algorithm that can effectively extract unknown node position has been a challenge in WSN. Among all localization technologies, the Distance Vector-Hop (DV-Hop) algorithm has been most popular because it simply utilizes the hop counts as connectivity measurements. This paper proposes an improved DV-Hop based algorithm, a centroid DV-hop localization with selected anchors and inverse distance weighting schemes (SIC-DV-Hop). We adopt an inverse distance weighting method More >

  • Open Access

    ARTICLE

    Localization Based Evolutionary Routing (LOBER) for Efficient Aggregation in Wireless Multimedia Sensor Networks

    Ashwinth Janarthanan1,*, Dhananjay Kumar1

    CMC-Computers, Materials & Continua, Vol.60, No.3, pp. 895-912, 2019, DOI:10.32604/cmc.2019.06805

    Abstract Efficient aggregation in wireless sensor nodes helps reduce network traffic and reduce energy consumption. The objective of this work Localization Based Evolutionary Routing (LOBER) is to achieve global optimization for aggregation and WMSN lifetime. Improved localization is achieved by a novel Centroid Based Octant Localization (CBOL) technique considering an arbitrary hexagonal region. Geometric principles of hexagon are used to locate the unknown nodes in the centroid positions of partitioned regions. Flower pollination algorithm, a meta heuristic evolutionary algorithm that is extensively applied in solving real life, complex and nonlinear optimization problems in engineering and industry More >

  • Open Access

    ARTICLE

    Matching Contours in Images through the use of Curvature, Distance to Centroid and Global Optimization with Order-Preserving Constraint

    Francisco P. M. Oliveira1, João Manuel R. S. Tavares1

    CMES-Computer Modeling in Engineering & Sciences, Vol.43, No.1, pp. 91-110, 2009, DOI:10.3970/cmes.2009.043.091

    Abstract This paper presents a new methodology to establish the best global match of objects' contours in images. The first step is the extraction of the sets of ordered points that define the objects' contours. Then, by using the curvature value and its distance to the corresponded centroid for each point, an affinity matrix is built. This matrix contains information of the cost for all possible matches between the two sets of ordered points. Then, to determine the desired one-to-one global matching, an assignment algorithm based on dynamic programming is used. This algorithm establishes the global More >

Displaying 1-10 on page 1 of 7. Per Page