Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (124)
  • Open Access

    ARTICLE

    A Rapid Parameter of Enzyme-Treated Cellulosic Material Revealed by Reducing Sugar Release

    Verônica Távilla Ferreira Silva, Adriane Maria Ferreira Milagres*

    Journal of Renewable Materials, Vol.12, No.3, pp. 539-551, 2024, DOI:10.32604/jrm.2023.045726

    Abstract This study was conducted to evaluate the effectiveness of enzymes in purifying and reducing the degree of polymerization of cellulose for the production of dissolving pulp. Our goal was to determine the contributions of xylanase (X) and endoglucanase (EG) in the treatment of pulp, specifically by quantifying the formation of soluble and insoluble reducing sugars using the dinitrosalycilic acid (DNS) test. Predominantly, the release of soluble reducing sugars (RSSol) was enhanced after xylanase treatment, while endoglucanase (EG) treatment led to changes in insoluble reducing sugars (RSIns). The maximum synergism was observed for RSIns when a high ratio of endoglucanase to… More > Graphic Abstract

    A Rapid Parameter of Enzyme-Treated Cellulosic Material Revealed by Reducing Sugar Release

  • Open Access

    ARTICLE

    Characterization and Selection of Microcrystalline Cellulose from Oil Palm Empty Fruit Bunches for Strengthening Hydrogel Films

    Susi Susi1,2,*, Makhmudun Ainuri3,*, Wagiman Wagiman3, Mohammad Affan Fajar Falah3

    Journal of Renewable Materials, Vol.12, No.3, pp. 513-537, 2024, DOI:10.32604/jrm.2024.045586

    Abstract Microcrystalline cellulose (MCC) is one of the cellulose derivatives produced as a result of the depolymerization of a part of cellulose to achieve high crystallinity. When implemented in other polymers, high crystallinity correlates with greater strength and stiffnes, but it can reduce the water-holding capacity. The acid concentration and hydrolysis time will affect the acquisition of crystallinity and water absorption capacity, both of which have significance as properties of hydrogel filler. The study aimed to evaluate the properties and select the MCC generated from varying the proportion of hydrochloric acid (HCl) and the appropriate hydrolysis time as a filler for… More > Graphic Abstract

    Characterization and Selection of Microcrystalline Cellulose from Oil Palm Empty Fruit Bunches for Strengthening Hydrogel Films

  • Open Access

    ARTICLE

    Unraveling the Rheology of Nanocellulose Aqueous Suspensions: A Comprehensive Study on Biomass-Derived Nanofibrillated Cellulose

    Mingyue Miao1,#, Fei Wang1,#, Qing Li1, Longchen Tao1, Chenchen Dai1, Yu Liu1, Shujuan Han1, Wenshuai Chen1,*, Ping Lu2,*

    Journal of Renewable Materials, Vol.12, No.3, pp. 443-455, 2024, DOI:10.32604/jrm.2023.030412

    Abstract The rheological properties of nanocellulose aqueous suspensions play a critical role in the development of nanocellulose-based bulk materials. High-crystalline, high-aspect ratio, and slender nanofibrillated cellulose (NFC) were extracted from four biomass resources. The cellulose nanofibrils and nanofibril bundles formed inter-connected networks in the NFC aqueous suspensions. The storage moduli of the suspensions with different concentrations were higher than their corresponding loss moduli. As the concentration increased, the storage and loss modulus of NFC dispersion increased. When the shear rate increased to a certain value, there were differences in the changing trend of the rheological behavior of NFC aqueous suspensions derived… More > Graphic Abstract

    Unraveling the Rheology of Nanocellulose Aqueous Suspensions: A Comprehensive Study on Biomass-Derived Nanofibrillated Cellulose

  • Open Access

    ARTICLE

    Performance Enhancement of Bio-fouling Resistant Cellulose triacetate-based Osmosis Membranes using Functionalized Multiwalled Carbon Nanotube & Graphene Oxide

    A.K. GHOSH1, RUTUJA S. BHOJE2, R.C. BINDAL1

    Journal of Polymer Materials, Vol.37, No.1-2, pp. 109-120, 2020, DOI:10.32381/JPM.2020.37.1-2.8

    Abstract In this study, cellulose triacetate (CTA) based nanocomposite membranes were developed by incorporation of carboxylic acid functionalized multiwalled carbon-nanotube (cMWCNT) and graphene oxide (GO) which have enhancement of both flux and fouling resistance properties of the membranes. Membranes were casted at room temperature and annealed at 90o C hot water for 10 minutes. The incorporation level of both the nanomaterials is 1.5% of the CTA polymer weight in the nanocomposite membranes. Prepared membranes were characterized in terms of water contact angle, surface morphology and mechanical strength. The performance of the membranes was evaluated both in reverse osmosis (RO) and forward… More >

  • Open Access

    ARTICLE

    Preparation of Corn Cellulose Films with Controllable Mechanical Property by Using Switchable CO2 /DBU/ DMSO System

    BAOHAI PAN1,2, JUNCHENG HUANG1, LAI CHEN2, FEI LIU1,*, CHEN JING, HAINING NA1,*, JIN ZHU1

    Journal of Polymer Materials, Vol.37, No.1-2, pp. 17-27, 2020, DOI:10.32381/JPM.2020.37.1-2.2

    Abstract A switchable CO2 /1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)/dimethyl sulfoxide (DMSO) solvent system is applied to prepare corn cellulose film with controllable mechanical property. By use of the switchable CO2 /DBU/DMSO system, a rather simple process concerning reacted dissolution and heated precipitation controlled by addition and releasing of CO2 respectively, to prepare corn cellulose film, is formed. Results exhibit the degree of dissolution of corn cellulose is easily controlled just by adjusting the feeding amount of DBU in the switchable solvent system. Accordingly, some undissolved part of corn cellulose with relative high crystallinity can be appropriately retained to contribute to the improvement of mechanical… More >

  • Open Access

    ARTICLE

    Synthesis of Novel Nanocomposite Based on Carboxymethylcellulose (CMC), Kaolin and Urea Fertilizer for Controlled Release

    NALINI SHARMA1,*, AJAY SINGH2, RAJ KUMAR DUTTA3

    Journal of Polymer Materials, Vol.37, No.1-2, pp. 1-15, 2020, DOI:10.32381/JPM.2020.37.1-2.1

    Abstract Controlled Release fertilizers (CRFs) are new generation agrochemicals which aid in decreasing environmental pollution. In the present study, novel CRF beads are synthesized by the technique of sol-gel polymerization. CMC polymer at various concentrations was used as a matrix and kaolin was used as a binder to enhance mechanical properties of the beads. The study also reveals the incorporation of Kaolin at different concentrations and optimization of the same. Fe3+ was used as a cross-linker to obtain spherical beads. Also, a study was done to optimize the cross linking time and concentration of cross linking solution. The usage of polymers… More >

  • Open Access

    ARTICLE

    Effect of N,N-Dimethylacetamide/lithium chloride modified microcrystalline cellulose (MCC) on the processing behaviour and properties of celluloserubber (NBR and EPDM) composites

    LAVANYA, R1, NATCHIMUTHU, N2,*

    Journal of Polymer Materials, Vol.38, No.1-2, pp. 89-100, 2021, DOI:10.32381/JPM.2021.38.1-2.8

    Abstract Rubber composites of nitrile (NBR) and Ethylene-Propylene-Diene (EPDM) containing unmodified and modified microcrystalline cellulose(MCC) are evaluated for their processing behaviour. The used modified MCC (T-MCC) was treated by N,N-dimethylacetamide/lithium chloride (DMAc/ LiCl).ATR-FTIR spectra of NBR-MCC composites have indicated N-H stretching and bending vibrations and confirmed interactions between nitrile rubber and MCC. AFM studies have indicated that the average roughness of NBR-T-MCC was significantly reduced when compared to that of NBR-untreated MCC. Important processing parameters such as scorch time and cure time are found to decrease significantly for both NBR and EPDM composites withT-MCC. Mechanical properties of these composites are found… More >

  • Open Access

    ARTICLE

    Novel Sustainable Cellulose Acetate Based Biosensor for Glucose Detection

    M. F. Elkady1,2,*, E. M. El-Sayed2, Mahmoud Samy3, Omneya A. Koriem1, H. Shokry Hassan4,5

    Journal of Renewable Materials, Vol.12, No.2, pp. 369-380, 2024, DOI:10.32604/jrm.2023.046585

    Abstract In this study, green zinc oxide (ZnO)/polypyrrole (Ppy)/cellulose acetate (CA) film has been synthesized via solvent casting. This film was used as supporting material for glucose oxidase (GOx) to sensitize a glucose biosensor. ZnO nanoparticles have been prepared via the green route using olive leaves extract as a reductant. ZnO/Ppy nanocomposite has been synthesized by a simple in-situ chemical oxidative polymerization of pyrrole (Py) monomer using ferric chloride (FeCl3) as an oxidizing agent. The produced materials and the composite films were characterized using X-ray diffraction analysis (XRD), scanning electron microscope (SEM), Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA). Glucose… More > Graphic Abstract

    Novel Sustainable Cellulose Acetate Based Biosensor for Glucose Detection

  • Open Access

    ARTICLE

    Folic Acid-Functionalized Nanocrystalline Cellulose as a Renewable and Biocompatible Nanomaterial for Cancer-Targeting Nanoparticles

    Thean Heng Tan1, Najihah Mohd Hashim2, Wageeh Abdulhadi Yehya Dabdawb1, Mochamad Zakki Fahmi3,*, Hwei Voon Lee1,*

    Journal of Renewable Materials, Vol.12, No.1, pp. 29-43, 2024, DOI:10.32604/jrm.2023.043449

    Abstract The study focuses on the development of biocompatible and stable FA-functionalized nanocrystalline cellulose (NCC) as a potential drug delivery system for targeting folate receptor-positive cancer cells. The FA-functionalized NCCs were synthesized through a series of chemical reactions, resulting in nanoparticles with favorable properties for biomedical applications. The microstructural analysis revealed that the functionalized NCCs maintained their rod-shaped morphology and displayed hydrodynamic diameters suitable for evading the mononuclear phagocytic system while being large enough to target tumor tissues. Importantly, these nanoparticles possessed a negative surface charge, enhancing their stability and repelling potential aggregation. The binding specificity of FA-functionalized NCCs to folate… More > Graphic Abstract

    Folic Acid-Functionalized Nanocrystalline Cellulose as a Renewable and Biocompatible Nanomaterial for Cancer-Targeting Nanoparticles

  • Open Access

    ARTICLE

    Preparation and Characterization of Biobased Dehydroabietyl Polyethylene Glycol Glycidyl Ether-Grafted Hydroxyethyl Cellulose with High Emulsifying Property

    Zhengqing Ding, Quan Yang, Xinyan Yan, Feng Gu, Xujuan Huang*, Zhaosheng Cai*

    Journal of Renewable Materials, Vol.12, No.1, pp. 103-117, 2024, DOI:10.32604/jrm.2023.029424

    Abstract Dehydroabietyl polyethylene glycol glycidyl ether-grafted hydroxyethyl cellulose (HEC) polymer surfactant (DA(EO)5GE-g-HEC) was prepared using ring-opening polymerization with biobased rosin and hydroxyethyl cellulose as feedstocks. Dehydroabietyl polyethylene glycol glycidyl ether (DA(EO)5GE) was formed by condensation of dehydroabietyl alcohol polyoxyethylene ether (Rosin derivative: DA(EO)5H) and epichlorohydrin. The grafting degree of DA(EO)5GE-g-HEC was manipulated by adjusting the mass ratio of HEC and DA(EO)5GE and confirmed by EA. According to the formula, when m(HEC)/m(DA(EO)2GE) was 1:1~1:5, the grafting rate of DA(EO)5GE in DA(EO)5GE-g-HEC varied from 34.43% to 38.33%. The surface activity and foam properties of DA(EO)5GE-g-HEC aqueous solution were studied. The results showed that… More > Graphic Abstract

    Preparation and Characterization of Biobased Dehydroabietyl Polyethylene Glycol Glycidyl Ether-Grafted Hydroxyethyl Cellulose with High Emulsifying Property

Displaying 1-10 on page 1 of 124. Per Page