Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Multi-Level Image Segmentation Combining Chaotic Initialized Chimp Optimization Algorithm and Cauchy Mutation

    Shujing Li, Zhangfei Li, Wenhui Cheng, Chenyang Qi, Linguo Li*

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2049-2063, 2024, DOI:10.32604/cmc.2024.051928 - 15 August 2024

    Abstract To enhance the diversity and distribution uniformity of initial population, as well as to avoid local extrema in the Chimp Optimization Algorithm (CHOA), this paper improves the CHOA based on chaos initialization and Cauchy mutation. First, Sin chaos is introduced to improve the random population initialization scheme of the CHOA, which not only guarantees the diversity of the population, but also enhances the distribution uniformity of the initial population. Next, Cauchy mutation is added to optimize the global search ability of the CHOA in the process of position (threshold) updating to avoid the CHOA falling More >

  • Open Access

    ARTICLE

    An Enhanced Equilibrium Optimizer for Solving Optimization Tasks

    Yuting Liu1, Hongwei Ding1,*, Zongshan Wang1,*, Gaurav Dhiman2,3,4, Zhijun Yang1, Peng Hu5

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2385-2406, 2023, DOI:10.32604/cmc.2023.039883 - 29 November 2023

    Abstract The equilibrium optimizer (EO) represents a new, physics-inspired metaheuristic optimization approach that draws inspiration from the principles governing the control of volume-based mixing to achieve dynamic mass equilibrium. Despite its innovative foundation, the EO exhibits certain limitations, including imbalances between exploration and exploitation, the tendency to local optima, and the susceptibility to loss of population diversity. To alleviate these drawbacks, this paper introduces an improved EO that adopts three strategies: adaptive inertia weight, Cauchy mutation, and adaptive sine cosine mechanism, called SCEO. Firstly, a new update formula is conceived by incorporating an adaptive inertia weight… More >

  • Open Access

    ARTICLE

    Multi-Strategy Boosted Spider Monkey Optimization Algorithm for Feature Selection

    Jianguo Zheng, Shuilin Chen*

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3619-3635, 2023, DOI:10.32604/csse.2023.038025 - 03 April 2023

    Abstract To solve the problem of slow convergence and easy to get into the local optimum of the spider monkey optimization algorithm, this paper presents a new algorithm based on multi-strategy (ISMO). First, the initial population is generated by a refracted opposition-based learning strategy to enhance diversity and ergodicity. Second, this paper introduces a non-linear adaptive dynamic weight factor to improve convergence efficiency. Then, using the crisscross strategy, using the horizontal crossover to enhance the global search and vertical crossover to keep the diversity of the population to avoid being trapped in the local optimum. At More >

  • Open Access

    ARTICLE

    An Improved Reptile Search Algorithm Based on Cauchy Mutation for Intrusion Detection

    Salahahaldeen Duraibi*

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2509-2525, 2023, DOI:10.32604/csse.2023.036119 - 09 February 2023

    Abstract With the growth of the discipline of digital communication, the topic has acquired more attention in the cybersecurity medium. The Intrusion Detection (ID) system monitors network traffic to detect malicious activities. The paper introduces a novel Feature Selection (FS) approach for ID. Reptile Search Algorithm (RSA)—is a new optimization algorithm; in this method, each agent searches a new region according to the position of the host, which makes the algorithm suffers from getting stuck in local optima and a slow convergence rate. To overcome these problems, this study introduces an improved RSA approach by integrating… More >

  • Open Access

    ARTICLE

    An Improved Bald Eagle Search Algorithm with Cauchy Mutation and Adaptive Weight Factor for Engineering Optimization

    Wenchuan Wang1,*, Weican Tian1, Kwok-wing Chau2, Yiming Xue1, Lei Xu3, Hongfei Zang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.2, pp. 1603-1642, 2023, DOI:10.32604/cmes.2023.026231 - 06 February 2023

    Abstract The Bald Eagle Search algorithm (BES) is an emerging meta-heuristic algorithm. The algorithm simulates the hunting behavior of eagles, and obtains an optimal solution through three stages, namely selection stage, search stage and swooping stage. However, BES tends to drop-in local optimization and the maximum value of search space needs to be improved. To fill this research gap, we propose an improved bald eagle algorithm (CABES) that integrates Cauchy mutation and adaptive optimization to improve the performance of BES from local optima. Firstly, CABES introduces the Cauchy mutation strategy to adjust the step size of… More >

Displaying 1-10 on page 1 of 5. Per Page