Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (15)
  • Open Access

    ARTICLE

    Preliminary Study: Furfural Production from Oat Husks via Phosphorus-Containing Catalysts Catalyzed Hydrothermal Pretreatment in the Context of Biorefinery

    Prans Brazdausks*, Maris Puke, Guntis Sosins

    Journal of Renewable Materials, Vol.13, No.4, pp. 719-730, 2025, DOI:10.32604/jrm.2025.057944 - 21 April 2025

    Abstract Oat husks, a byproduct of oat milling operations with limited economic value, present a promising feedstock for biorefinery processes due to their chemical composition. This study investigates the conversion of C5 carbohydrates in oat husks into furfural through hydrothermal pretreatment using various phosphate-based catalysts, including H3PO4, NH4H2PO4, NaH2PO4, KH2PO4, K2HPO4 and K3PO4 as catalyst. The catalysts’ effectiveness in promoting furfural production was evaluated under identical hydrothermal conditions (treatment time for 60 min at a constant temperature of 170°C and a catalyst amount). Continuous water steam was used to strip furfural from the reaction zone and minimize its degradation.… More > Graphic Abstract

    Preliminary Study: Furfural Production from Oat Husks via Phosphorus-Containing Catalysts Catalyzed Hydrothermal Pretreatment in the Context of Biorefinery

  • Open Access

    REVIEW

    Recent Advances in Polymer-Based Photocatalysts for Environmental Remediation and Energy Conversion: A Review

    Surajudeen Sikiru1,*, Yusuf Olanrewaju Busari2,3, John Oluwadamilola Olutoki4, Mohd Muzamir Mahat1, Sanusi Yekinni Kolawole5

    Journal of Polymer Materials, Vol.42, No.1, pp. 1-31, 2025, DOI:10.32604/jpm.2025.058936 - 27 March 2025

    Abstract Photocatalysis is a crucial technique for environmental cleanup and renewable energy generation. Polymer-based photocatalysts have attracted interest due to their adaptability, adjustable chemical characteristics, and enhanced light absorption efficiency. Unlike traditional inorganic photocatalysts, we can optimize polymeric systems to enhance photocatalytic efficiency and yield significant advantages in environmental remediation and energy conversion applications. This study talks about the latest developments in polymer-based photocatalysts and how important they are for cleaning water, breaking down pollutants, and making renewable energy through processes like hydrogen production and CO2 reduction. These materials are proficient in degrading harmful pollutants such as… More >

  • Open Access

    ARTICLE

    Vacancy-defect promoting blue LED-driven H2O2 synthesis on Zn0.4Cd0.6S without additional cocatalysts

    W. W. Lu, J. N. Ding, Z. Y. Wang, Y. C. Wei, Y. P. Chen, J. Xu*

    Chalcogenide Letters, Vol.21, No.8, pp. 631-640, 2024, DOI:10.15251/CL.2024.218.631

    Abstract Photocatalytic synthesis of hydrogen peroxide offers an effective solution to the energy crisis. The design and development of high-activity and low-cost photocatalysts are crucial for H2O2 production. In this work, Zn0.4Cd0.6S with abundant S vacancies (SV-ZCS) is developed for H2O2 photosynthesis under 405 nm LED illumination without additional cocatalysts. The S vacancies serve as photo-generated electron trap centers, effectively extending the lifetimes of photogenerated carriers and promoting the separation of photoelectric carriers. Additionally, SV-ZCS is endowed with enhanced light capture capability, enhancing the overall photocatalytic activity for H2O2 production. The results were in line with expectations, the SV-ZCS samples More >

  • Open Access

    ARTICLE

    Production of Light Fraction-Based Pyrolytic Fuel from Spirulina platensis Microalgae Using Various Low-Cost Natural Catalysts and Insertion

    Indra Mamad Gandidi1,2,*, Sukarni Sukarni3,4, Avita Ayu Permanasari3, Purnami Purnami5, Tuan Amran Tuan Abdullah6, Anwar Johari6, Nugroho Agung Pambudi7,*

    Energy Engineering, Vol.121, No.12, pp. 3635-3648, 2024, DOI:10.32604/ee.2024.054943 - 22 November 2024

    Abstract The use of catalysts has significantly enhanced the yield and quality of in-situ pyrolysis products. However, there is a lack of understanding regarding pyrolysis approaches that utilize several low-cost natural catalysts (LCC) and their placement within the reactor. Therefore, this study aims to examine the effects of various LCC on the in-situ pyrolysis of spirulina platensis microalgae (SPM) and investigate the impact of different types of catalysts. We employed LCC such as zeolite, dolomite, kaolin, and activated carbon, with both layered and uniformly mixed LCC-SPM placements. Each experiment was conducted at a constant temperature of 500°C… More > Graphic Abstract

    Production of Light Fraction-Based Pyrolytic Fuel from <i>Spirulina platensis</i> Microalgae Using Various Low-Cost Natural Catalysts and Insertion

  • Open Access

    PROCEEDINGS

    Three-Dimensionally Printed Transition Metal Catalysts with Hierarchically Porous Structures for Wastewater Purification

    Sheng Guo1,2,*, Mengmeng Yang1, Yao Huang2, Xizi Gao1, Chao Cai3,*, Kun Zhou4,5,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012655

    Abstract 3D printing technology has demonstrated considerable potential in wastewater remediation. Zero-valent metal (ZVM) has been recognized as an efficient catalyst facilitating the organic pollutant degradation in water. However, owing to its inclination toward oxidation and aggregation, the practical utilization of ZVM remains a challenge. Herein, we have employed 3D printing techniques to fabricate hierarchically porous ZVM, such as zero-valent copper and zero-valent iron, which exhibit a high level of printing precision and commendable resistance to compression. These 3D-ZVM catalysts can effectively activate peroxymonosulfate (PMS), thereby degrading various organic pollutants, including tetracycline, ciprofloxacin, rhodamine B, and… More >

  • Open Access

    REVIEW

    Pathways for Sustainable Utilization of Waste Chicken Eggshell

    Omojola Awogbemi1,*, Daramy Vandi Von Kallon1, Victor Sunday Aigbodion2,3

    Journal of Renewable Materials, Vol.10, No.8, pp. 2217-2246, 2022, DOI:10.32604/jrm.2022.019152 - 25 April 2022

    Abstract Chicken eggshell is one of the most common wastes generated from households, restaurants and other food processing outlets. Waste Chicken Eggshells (WCES) also constitutes an environmental nuisance and ends up discarded at dumping site with no consideration of further usage. The main constituent of WCES is calcium carbonate from which calcium or calcium oxide can be extracted for various applications. This current effort reviews recently published literature on the diverse applications of WCES. The considered utilization avenues include catalysts for biofuel production, construction industry, wastewater purification, industrial sector, food industry, medical, and agricultural applications. The… More > Graphic Abstract

    Pathways for Sustainable Utilization of Waste Chicken Eggshell

  • Open Access

    ARTICLE

    Stepwise Pyrolysis by LBCR Downstream to Enhance of Gasoline Fraction of Liquid Fuel from MMSW

    Indra Mamad Gandidi1,2,*, Edy Suryadi3, Efri Mardawati3, Dwi Rustam Kendarto3, Nugroho Agung Pambudi4,*

    Energy Engineering, Vol.119, No.3, pp. 1169-1178, 2022, DOI:10.32604/ee.2022.018821 - 31 March 2022

    Abstract Pyrolysis is one of the thermal cracking methods to convert hydrocarbon to liquid fuel. The quantity and quality of the process are dependent on several condition including temperature, reaction time, catalyst, and the type of reactor. Meanwhile, a gasoline fraction was maximum product to be considered in the pyrolisis process. Therefore, this study aims to increase the gasoline fraction in liquid fuel using stepwise pyrolysis with a long bed catalytic reactor downstream (LBCR). The LBCR downstream was equipped with the top and bottom outlet and the fed source was mixed municipal solid waste (MMSW). The… More >

  • Open Access

    ARTICLE

    Facile Preparation of Fe–N–C Oxygen Reduction Electrocatalysts from Metal Organic Frameworks for Zn-Air Battery

    Chengcheng Wang1,2,*, Dawei Luo1, Bingxue Hou3, Mortaza Gholizadeh4, Zanxiong Tan1, Xiaojie Han1

    Journal of Renewable Materials, Vol.10, No.5, pp. 1337-1348, 2022, DOI:10.32604/jrm.2022.018770 - 22 December 2021

    Abstract It is critical to study efficient, stable oxygen reduction reaction (ORR) electrocatalysts due to insufficient stability and expensive price of Pt/C catalysts for Zn-air batteries. Fe–N–C electrocatalysts was synthesized by a facile solvent-green method and the efficiency of Fe–N–C optimized was studied as potential ORR electrocatalysts under alkaline condition. Results indicated that it had excellent ORR activity with E1/2 of 0.93 V, which was competitive to that of Pt/C-JM under the same conditions. Moreover, the assembled Zn-air battery exhibited discharge potential and charge potential of 1.2 V, 2.32 V at 5 mA cm2 with high stability, respectively. More > Graphic Abstract

    Facile Preparation of Fe–N–C Oxygen Reduction Electrocatalysts from Metal Organic Frameworks for Zn-Air Battery

  • Open Access

    ARTICLE

    Glycolysis Recycling of Waste Polyurethane Rigid Foam Using Different Catalysts

    Xiaohua Gu, Hongxiang Luo*, Shiwei Lv, Peng Chen

    Journal of Renewable Materials, Vol.9, No.7, pp. 1253-1266, 2021, DOI:10.32604/jrm.2021.014876 - 18 March 2021

    Abstract Dramatically increasing waste polyurethane rigid foam (WPRF) draws the attention of the world. A mixture of ethylene glycol (EG) and diethylene glycol (DEG) is used as glycolysis agents. WPRF was subjected to alcoholysis using different catalysts which are titanium ethylene glycol and potassium hydroxide to obtain recycled polyol, respectively. The effect of a different catalyst on the viscosity and hydroxyl value of recycled polyol is discussed. The regenerated polyurethane (RPU) is performed using the recycled polyol. Infrared spectrum, compressive strength, apparent density, water absorption, scanning electron microscope, and thermogravimetric analysis are carried out to investigate… More >

  • Open Access

    ARTICLE

    Self-Supported Nanoporous Gold with Gradient Tin Oxide for Sustainable and Efficient Hydrogen Evolution in Neutral Media

    Xianglong Lu1, Tianshui Yu1, Hailing Wang1, Ruichun Luo2, Pan Liu2, Songliu Yuan1, Lihua Qian1,*

    Journal of Renewable Materials, Vol.8, No.2, pp. 133-151, 2020, DOI:10.32604/jrm.2020.08650 - 01 February 2020

    Abstract Hydrogen evolution reaction (HER) in neutral medium suffers from slow kinetics as compared to that in alkaline or acidic conditions, owing to larger Ohmic loss and low proton concentration. Here we report that a self-supported nanoporous Au-SnOx (NP Au-SnOx) catalyst with gradient tin oxide surface could significantly enhance HER activity in neutral buffer solution (0.2 M PBS). The NP Au-SnOx catalyst exhibits a low onset overpotential of 38 mV and a small Tafel slope of 79 mV dec−1 . The current density of 10 mA cm−2 is manifested at an overpotential as low as 148 mV, representing the More >

Displaying 1-10 on page 1 of 15. Per Page