Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (17)
  • Open Access

    ARTICLE

    Modular System of Cascaded Converters Based on Model Predictive Control

    Chunxue Wen, Yaoquan Wei*, Peng Wang, Jianlin Li, Jinghua Zhou, Qingyun Li

    Energy Engineering, Vol.121, No.11, pp. 3241-3261, 2024, DOI:10.32604/ee.2024.051810 - 21 October 2024

    Abstract A modular system of cascaded converters based on model predictive control (MPC) is proposed to meet the application requirements of multiple voltage levels and electrical isolation in renewable energy generation systems. The system consists of a Buck/Boost + CLLLC cascaded converter as a submodule, which is combined in series and parallel on the input and output sides to achieve direct-current (DC) voltage transformation, bidirectional energy flow, and electrical isolation. The CLLLC converter operates in DC transformer mode in the submodule, while the Buck/Boost converter participates in voltage regulation. This article establishes a suitable mathematical model More >

  • Open Access

    ARTICLE

    Deep Learning-Based FOPID Controller for Cascaded DC-DC Converters

    S. Hema1,*, Y. Sukhi2

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1503-1519, 2023, DOI:10.32604/csse.2023.036577 - 09 February 2023

    Abstract Smart grids and their technologies transform the traditional electric grids to assure safe, secure, cost-effective, and reliable power transmission. Non-linear phenomena in power systems, such as voltage collapse and oscillatory phenomena, can be investigated by chaos theory. Recently, renewable energy resources, such as wind turbines, and solar photovoltaic (PV) arrays, have been widely used for electric power generation. The design of the controller for the direct Current (DC) converter in a PV system is performed based on the linearized model at an appropriate operating point. However, these operating points are ever-changing in a PV system,… More >

  • Open Access

    ARTICLE

    Logformer: Cascaded Transformer for System Log Anomaly Detection

    Feilu Hang1, Wei Guo1, Hexiong Chen1, Linjiang Xie1, Chenghao Zhou2,*, Yao Liu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.1, pp. 517-529, 2023, DOI:10.32604/cmes.2023.025774 - 05 January 2023

    Abstract Modern large-scale enterprise systems produce large volumes of logs that record detailed system runtime status and key events at key points. These logs are valuable for analyzing performance issues and understanding the status of the system. Anomaly detection plays an important role in service management and system maintenance, and guarantees the reliability and security of online systems. Logs are universal semi-structured data, which causes difficulties for traditional manual detection and pattern-matching algorithms. While some deep learning algorithms utilize neural networks to detect anomalies, these approaches have an over-reliance on manually designed features, resulting in the… More >

  • Open Access

    ARTICLE

    Fault Recognition of Multilevel Inverter Using Artificial Neural Network Approach

    Aravind Athimoolam1,*, Karthik Balasubramanian2

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 1331-1347, 2023, DOI:10.32604/iasc.2023.033465 - 05 January 2023

    Abstract This paper focuses on the development of a diagnostic tool for detecting insulated gate bipolar transistor power electronic switch flaws caused by both open and short circuit faults in multi-level inverter time-frequency output voltage specifications. High-resolution laboratory virtual instrument engineering workbench software testing tool with a sample rate data collection system, as well as specialized signal processing and soft computing technologies, are used in this proposed method. On a single-phase cascaded H-bridge multilevel inverter, simulation and experimental investigations of both open and short issues of the insulated gate bipolar transistor components are performed out. In More >

  • Open Access

    ARTICLE

    Healthcare Monitoring Using Ensemble Classifiers in Fog Computing Framework

    P. M. Arunkumar1, Mehedi Masud2, Sultan Aljahdali2, Mohamed Abouhawwash3,4,*

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 2265-2280, 2023, DOI:10.32604/csse.2023.032571 - 03 November 2022

    Abstract Nowadays, the cloud environment faces numerous issues like synchronizing information before the switch over the data migration. The requirement for a centralized internet of things (IoT)-based system has been restricted to some extent. Due to low scalability on security considerations, the cloud seems uninteresting. Since healthcare networks demand computer operations on large amounts of data, the sensitivity of device latency evolved among health networks is a challenging issue. In comparison to cloud domains, the new paradigms of fog computing give fresh alternatives by bringing resources closer to users by providing low latency and energy-efficient data… More >

  • Open Access

    ARTICLE

    Inner Cascaded U2-Net: An Improvement to Plain Cascaded U-Net

    Wenbin Wu1, Guanjun Liu1,*, Kaiyi Liang2, Hui Zhou2

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.2, pp. 1323-1335, 2023, DOI:10.32604/cmes.2022.020428 - 31 August 2022

    Abstract Deep neural networks are now widely used in the medical image segmentation field for their performance superiority and no need of manual feature extraction. U-Net has been the baseline model since the very beginning due to a symmetrical U-structure for better feature extraction and fusing and suitable for small datasets. To enhance the segmentation performance of U-Net, cascaded U-Net proposes to put two U-Nets successively to segment targets from coarse to fine. However, the plain cascaded U-Net faces the problem of too less between connections so the contextual information learned by the former U-Net cannot… More >

  • Open Access

    ARTICLE

    Design and Analysis of Cascaded Hybrid-Bridge Multi-Cell Multilevel Inverter with Reduced Total Harmonic Distortion Profile

    Bulbul Sharma1,*, N. Karthick1, Durgesh Prasad Bagarty2

    Energy Engineering, Vol.119, No.6, pp. 2585-2605, 2022, DOI:10.32604/ee.2022.021465 - 14 September 2022

    Abstract This multilevel inverter methodology is the center of focus among researchers in recent era. It has been focused due to its advantages over existing topologies, drawbacks and improvement of power quality, Multi-level inverter has the ability to generate nearly sinusoidal waves. This sinusoidal wave can be further improved by increasing the level of output voltage or with the help of filter design, and this manuscript presents single-phase Multi cell Multi-Level Inverter (MLI). It has been considered for reducing component count to get a higher number of output voltage levels and lower Total harmonics distortion profile.… More >

  • Open Access

    ARTICLE

    Visual Object Tracking via Cascaded RPN Fusion and Coordinate Attention

    Jianming Zhang1,2,*, Kai Wang1,2, Yaoqi He1,2, Lidan Kuang1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.132, No.3, pp. 909-927, 2022, DOI:10.32604/cmes.2022.020471 - 27 June 2022

    Abstract Recently, Siamese-based trackers have achieved excellent performance in object tracking. However, the high speed and deformation of objects in the movement process make tracking difficult. Therefore, we have incorporated cascaded region-proposal-network (RPN) fusion and coordinate attention into Siamese trackers. The proposed network framework consists of three parts: a feature-extraction sub-network, coordinate attention block, and cascaded RPN block.We exploit the coordinate attention block, which can embed location information into channel attention, to establish long-term spatial location dependence while maintaining channel associations. Thus, the features of different layers are enhanced by the coordinate attention block. We then More >

  • Open Access

    ARTICLE

    Research on Facial Expression Capture Based on Two-Stage Neural Network

    Zhenzhou Wang1, Shao Cui1, Xiang Wang1,*, JiaFeng Tian2

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 4709-4725, 2022, DOI:10.32604/cmc.2022.027767 - 21 April 2022

    Abstract To generate realistic three-dimensional animation of virtual character, capturing real facial expression is the primary task. Due to diverse facial expressions and complex background, facial landmarks recognized by existing strategies have the problem of deviations and low accuracy. Therefore, a method for facial expression capture based on two-stage neural network is proposed in this paper which takes advantage of improved multi-task cascaded convolutional networks (MTCNN) and high-resolution network. Firstly, the convolution operation of traditional MTCNN is improved. The face information in the input image is quickly filtered by feature fusion in the first stage and… More >

  • Open Access

    ARTICLE

    ANN Based Reduced Switch Multilevel Inverter in UPQC for Power Quality Improvement

    Y. Alexander Jeevanantham1,*, S. Srinath2

    Intelligent Automation & Soft Computing, Vol.33, No.2, pp. 909-921, 2022, DOI:10.32604/iasc.2022.022907 - 08 February 2022

    Abstract A unified power quality conditioner (UPQC) plays a crucial role in the Power quality improvement of a power system. In this paper, a reduced switch multilevel inverter is with artificial neural network, soft computing technique control is proposed for UPQC. This proposed topology is employed for the mitigation of various power quality issues such as voltage sag, voltage swell, power factor, harmonics, and restoration time of voltage compensation. To show the enriched performance of the proposed topology comparative analysis is made with other two topologies of UPQC such as Conventional UPQC and UPQC using cascaded More >

Displaying 1-10 on page 1 of 17. Per Page