Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (25)
  • Open Access

    ARTICLE

    Reinforcement Effect of Recycled CFRP on Cement-Based Composites: With a Comparison to Commercial Carbon Fiber Powder

    Hantao Huang, Zhifang Zhang*, Zhenhua Wu, Yao Liu

    Structural Durability & Health Monitoring, Vol.18, No.4, pp. 409-423, 2024, DOI:10.32604/sdhm.2024.048597

    Abstract In this paper, recycled carbon fiber reinforced polymer (CFRP) mixture (CFRP-M, including recycled carbon fiber and powder) and refined recycled CFRP fiber (CFRP-F, mostly recycled carbon fiber) were added to cement to study the influence of addition on the flexural strength, compressive strength, and fluidity of cement-based materials. The recycled CFRP were prepared by mechanically processing the prepreg scraps generated during the manufacture of CFRP products. For comparison, commercial carbon fiber powder was also added in cement and the performance was compared to that of addition of recycled CFRP. The hydration products and strengthening mechanism… More >

  • Open Access

    ARTICLE

    Flammabilty and Mechanical Performance of MWCNT Incorporated Cyante Ester/Carbon Fiber Composites

    JITENDRA. S. TATE1,2,*, HARISH KALLAGUNTA1,2, ANDREW ALVAREZ1

    Journal of Polymer Materials, Vol.38, No.1-2, pp. 101-120, 2021, DOI:10.32381/JPM.2021.38.1-2.9

    Abstract The exponential growth in composites and their increased use in military, aerospace, energy, and automotive industry is driven by their high performance and light weight. High performance thermosetting polymers such as cyanate ester have received considerable attention due to its ability of volatile-free curing. It also offers advantages such as excellent radiation shielding, high thermal stability, and hydrophobicity with lots of potential for enhanced mechanical strength. This research article discusses the results of effects of multiwalled carbon nanotubes (MWCNT) at predetermined loading levels of 0.5wt%, 1wt% and 1.5wt% on mechanical, thermal and flammability properties of More >

  • Open Access

    ARTICLE

    Preparation and Analysis of Carbon Fiber-Silicon Carbide Thermally Conductive Asphalt Concrete

    Zhiyong Yang, Enjie Hu, Lei Xi, Zhi Chen*, Feng Xiong, Chuanhai Zhan

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.4, pp. 705-723, 2024, DOI:10.32604/fdmp.2023.044030

    Abstract An experimental investigation into the thermal conductivity of CF-SiC two-phase composite asphalt concrete is presented. The main objective of this study was to verify the possibility of using SiC powder instead of mineral powder as the thermal conductive filler to prepare a new type of asphalt concrete and improve the efficiency of electrothermal snow and ice melting systems accordingly. The thermal conductivity of asphalt concrete prepared with different thermally conductive fillers was tested by a transient plane source method, and the related performances were measured. Then the temperature rise rate and surface temperature were studied More >

  • Open Access

    ARTICLE

    CoS Nanosheets Coated with Dopamine-Derived Carbon Standing on Carbon Fiber Cloth as Binder-Free Anode for Li-ion Batteries

    Lianyuan Ji1, Mingchen Shi1, Zengkai Feng2, Hui Yang1,*

    Journal of Renewable Materials, Vol.12, No.2, pp. 259-274, 2024, DOI:10.32604/jrm.2023.030599

    Abstract

    Cobalt sulphides attract much attention as anode materials for Li-ion batteries (LIBs). However, its poor conductivity, low initial column efficiency and large volume changes during cycling have hindered its further development. Herein, novel interlaced CoS nanosheets were firstly prepared on Carbon Fiber Cloth (CFC) by two hydrothermal reactions followed with carbon coating via carbonizing dopamine (CoS NS@C/CFC). As a freestanding anode, the nanosheet structure of CoS not only accommodates the volume variation, but also provides a large interface area to proceed the charge transfer reaction. In addition, CFC works as both a three-dimensional skeleton and an

    More >

  • Open Access

    ARTICLE

    Multi-Scale Design and Optimization of Composite Material Structure for Heavy-Duty Truck Protection Device

    Yanhui Zhang1, Lianhua Ma1, Hailiang Su1,2,3,*, Jirong Qin2, Zhining Chen2, Kaibiao Deng1

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1961-1980, 2024, DOI:10.32604/cmes.2023.045570

    Abstract In this paper, to present a lightweight-developed front underrun protection device (FUPD) for heavy-duty trucks, plain weave carbon fiber reinforced plastic (CFRP) is used instead of the original high-strength steel. First, the mechanical and structural properties of plain carbon fiber composite anti-collision beams are comparatively analyzed from a multi-scale perspective. For studying the design capability of carbon fiber composite materials, we investigate the effects of TC-33 carbon fiber diameter (D), fiber yarn width (W) and height (H), and fiber yarn density (N) on the front underrun protective beam of carbon fiber composite materials. Based on… More >

  • Open Access

    ARTICLE

    Optimal Design of Porous Media in Solar Vapor Generators by Carbon Fiber Bundles

    Mohammad Yaghoub Abdollahzadeh Jamalabadi, Jinxiang Xi*

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 65-79, 2023, DOI:10.32604/fhmt.2023.042613

    Abstract As a means of harvesting solar energy for water treatment, solar-driven vapor generation is becoming more appealing. Due to their entangled fibrous networks and high surface area, fibers can be used as building blocks to generate water vapor. In this paper, using a two-dimensional fiber bundle model, we studied the generation of solar vapor based on the fiber height, distance between fibers, and input sun radiation. The performance of solar absorption system was also evaluated by evaluating thermal and water management. Results showed a constant increase in solar vapor generation with an increasing fiber height… More > Graphic Abstract

    Optimal Design of Porous Media in Solar Vapor Generators by Carbon Fiber Bundles

  • Open Access

    ARTICLE

    In-Situ Growing of Branched CNFs on Reusable RCFs to Construct Hierarchical Cross-Linked Composite for Enhanced Microwave Absorption

    Lei Liu*, Shenao Pang, Zhuhui Luo

    Journal of Renewable Materials, Vol.11, No.11, pp. 3891-3906, 2023, DOI:10.32604/jrm.2023.028192

    Abstract The recycling of carbon fibers and protection from unwanted microwave radiation are two important environmental issues that need to be addressed in modern society. Herein, branched carbon nanofibers (CNFs) were grown in-situ on recycled carbon fibers (RCFs) through the chemical vapor deposition method using nickel as catalysts and thiophene as aided-catalysts. The effect of thiophene on the growth morphology of CNFs was investigated. Correspondingly, branched CNFs-RCFs and straight CNFs-RCFs were respectively obtained in the presence and absence of thiophene. The microstructure and electromagnetic behaviour investigations have shown that the branched CNFs possess a typical multi-branched structure, More > Graphic Abstract

    <i>In-Situ</i> Growing of Branched CNFs on Reusable RCFs to Construct Hierarchical Cross-Linked Composite for Enhanced Microwave Absorption

  • Open Access

    ARTICLE

    Characterization of Unsaturated Polyester Filled with Waste Coconut Shells, Walnut Shells, and Carbon Fibers

    Marwah Subhi Attallah, Reem Alaa Mohammed*, Ruaa Haitham Abdel-Rahim

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2449-2469, 2023, DOI:10.32604/fdmp.2023.027750

    Abstract This study aims to evaluate the erosion behavior and the hardness of hybrid composites made of varying amounts of coconut shells, walnut shells, and carbon fibers dispersed in a polyester matrix. MINITAB (L16) Taguchi experiments were used to determine the optimal combination of parameters. In particular, an erosion device consisting of a motor with a constant flow rate of 45 L/min, a pump with a diameter of 40 mm, a nozzle with a diameter of 5 mm, and a tank made of “perspex glass” 55 cm long, 30 cm tall, and 25 cm wide was used. The tests were conducted by… More > Graphic Abstract

    Characterization of Unsaturated Polyester Filled with Waste Coconut Shells, Walnut Shells, and Carbon Fibers

  • Open Access

    ARTICLE

    Assessment of the Mechanical Properties of Carbon-Fiber Heating Cables in Snow and Ice Melting Applications

    Zhiyong Yang1, Jiacheng Zhang1, Henglin Xiao1,2, Zhi Chen1,*, Tian Bao1, Yin Liu1

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.9, pp. 2267-2288, 2023, DOI:10.32604/fdmp.2023.028652

    Abstract The use of carbon-fiber heating cables (CFHC) to achieve effective melting of snow and ice deposited on roads is a method used worldwide. In this study, tensile and compressive tests have been conducted to analyze the mechanical properties of the CFHC and assess whether the maximum tensile and compressive strengths can meet the pavement design specifications. In order to study the aging produced by multiple cycles of heating and cooling, in particular, the CFHC was repeatedly heated in a cold chamber with an ambient temperature ranging between −20°C and +40°C. Moreover, to evaluate how the More > Graphic Abstract

    Assessment of the Mechanical Properties of Carbon-Fiber Heating Cables in Snow and Ice Melting Applications

  • Open Access

    ARTICLE

    Durability Testing of Composite Aerospace Materials Based on a New Polymer Carbon Fiber-Reinforced Epoxy Resin

    Jinlong Shang*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.9, pp. 2315-2328, 2023, DOI:10.32604/fdmp.2023.026742

    Abstract In this study, the durability of a new polymer carbon fiber-reinforced epoxy resin used to produce composite material in the aerospace field is investigated through analysis of the corrosion phenomena occurring at the microscopic scale, and the related infrared spectra and thermal properties. It is found that light and heat can contribute to the aging process. In particular, the longitudinal tensile strength displays a non-monotonic trend, i.e., it first increases and then decreases over time. By contrast, the longitudinal compressive and inter-laminar shear strengths do not show significant changes. It is also shown that the More >

Displaying 1-10 on page 1 of 25. Per Page