Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (29)
  • Open Access

    ARTICLE

    Surface Modification of Activated Carbon by Nitrogen Doping and KOH Activation for Enhanced Carbon Dioxide Adsorption Performance

    Thanattha Chobsilp1, Alongkot Treetong2, Visittapong Yordsri3, Mattana Santasnachok4,5, Pollawat Charoeythornkhajhornchai6, Jaruvit Sukkasem7, Winadda Wongwiriyapan8, Worawut Muangrat1,5,*

    Journal of Renewable Materials, Vol.13, No.11, pp. 2155-2168, 2025, DOI:10.32604/jrm.2025.02025-0111 - 24 November 2025

    Abstract Nitrogen-doped activated carbon (N-AC) was successfully prepared by KOH-activation and nitrogen doping using ammonia (NH3) heat treatment. Coconut shell-derived activated carbon (AC) was heat-treated under NH3 gas in the temperature range of 700°C–900°C. Likewise, the mixture of potassium hydroxide (KOH) and AC was heated at 800°C, followed by heat treatment under NH3 gas at 800°C (hereafter referred to as KOH-N-AC800). Scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) method were utilized to analyze morphology, crystallinity, chemical bonding, chemical composition and surface area. The surface area and porosity of N-AC increased with increasing… More >

  • Open Access

    ARTICLE

    Unsteady Flow Dynamics and Phase Transition Behavior of CO2 in Fracturing Wellbores

    Zihao Yang1,*, Jiarui Cheng1, Zefeng Li2, Yirong Yang1, Linghong Tang1, Wenlan Wei1

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.9, pp. 2149-2176, 2025, DOI:10.32604/fdmp.2025.067739 - 30 September 2025

    Abstract This study presents a two-dimensional, transient model to simulate the flow and thermal behavior of CO2 within a fracturing wellbore. The model accounts for high-velocity flow within the tubing and radial heat exchange between the wellbore and surrounding formation. It captures the temporal evolution of temperature, pressure, flow velocity, and fluid density, enabling detailed analysis of phase transitions along different tubing sections. The influence of key operational and geological parameters, including wellhead pressure, injection velocity, inlet temperature, and formation temperature gradient, on the wellbore’s thermal and pressure fields is systematically investigated. Results indicate that due to… More >

  • Open Access

    ARTICLE

    Performance Analysis of sCO2 Centrifugal Compressor under Variable Operating Conditions

    Jiangbo Wu1, Siyi Sun1, Xiaoze Du1,2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.8, pp. 1789-1807, 2025, DOI:10.32604/fdmp.2025.064254 - 12 September 2025

    Abstract This study explores the aerodynamic performance and flow field characteristics of supercritical carbon dioxide (sCO2) centrifugal compressors under varying operating conditions. In particular, the Sandia main compressor impeller model is used as a reference system. Through three-dimensional numerical simulations, we examine the Mach number distribution, temperature field, blade pressure pulsation spectra, and velocity field evolution, and identify accordingly the operating boundaries ensuring stability and the mechanisms responsible for performance degradation. Findings indicate a stable operating range for mass flow rate between 0.74 and 3.74 kg/s. At the lower limit (0.74 kg/s), the maximum Mach number within… More >

  • Open Access

    ARTICLE

    Entropy Production and Energy Loss in Supercritical CO2 Centrifugal Compressor

    Senchun Miao1,*, Wenkai Hu1, Jiangbo Wu1, Zhengjing Shen1, Xiaoze Du1,2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.7, pp. 1711-1735, 2025, DOI:10.32604/fdmp.2025.062239 - 31 July 2025

    Abstract In Brayton cycle energy storage systems powered by supercritical carbon dioxide (sCO2), compressors are among the most critical components. Understanding their internal flow loss characteristics is, therefore, essential for enhancing the performance of such systems. This study examines the main sCO2 compressor from Sandia Laboratory, utilizing entropy production theory to elucidate the sources and distribution of energy losses both across the entire machine and within its key flow components. The findings reveal that turbulent viscous dissipation is the predominant contributor to total entropy production. Interestingly, while the relative importance of the entropy produced by various sources More >

  • Open Access

    ARTICLE

    Study on the Improvement of Foaming Properties of PBAT/PLA Composites by the Collaboration of Nano-Fe3O4 Carbon Nanotubes

    Jiahao Liu1,#, Xinyu Zhang1,#, Huiwei Wang1, Yupeng Li1, Shan Jin1, Guanxian Qiu1, Ce Sun1,2,*, Haiyan Tan1, Yanhua Zhang1,2,*

    Journal of Renewable Materials, Vol.13, No.4, pp. 669-685, 2025, DOI:10.32604/jrm.2025.02025-0042 - 21 April 2025

    Abstract In recent years, degradable materials to replace petroleum-based materials in preparing high-performance foams have received much research attention. Degradable polymer foaming mostly uses supercritical fluids, especially carbon dioxide (Sc-CO2). The main reason is that the foams obtained by Sc-CO2 foaming have excellent performance, and the foaming agent is green and pollution-free. In current research, Poly (butylene adipate-co-terephthalate) (PBAT), poly (lactic acid) (PLA), and other degradable polymers are generally used as the main foaming materials, but the foaming performance of these degradable polyesters is poor and requires modification. In this work, 10% PLA was added to PBAT to… More > Graphic Abstract

    Study on the Improvement of Foaming Properties of PBAT/PLA Composites by the Collaboration of Nano-Fe<sub><b>3</b></sub>O<sub><b>4</b></sub> Carbon Nanotubes

  • Open Access

    ARTICLE

    Steam Methane Reforming (SMR) Combined with Ship Based Carbon Capture (SBCC) for an Efficient Blue Hydrogen Production on Board Liquefied Natural Gas (LNG) Carriers

    Ikram Belmehdi1,*, Boumedienne Beladjine1, Mohamed Djermouni1, Amina Sabeur1, Mohammed El Ganaoui2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.1, pp. 71-85, 2025, DOI:10.32604/fdmp.2024.058510 - 24 January 2025

    Abstract The objective of this study is to propose an optimal plant design for blue hydrogen production aboard a liquefied natural gas (LNG) carrier. This investigation focuses on integrating two distinct processes—steam methane reforming (SMR) and ship-based carbon capture (SBCC). The first refers to the common practice used to obtain hydrogen from methane (often derived from natural gas), where steam reacts with methane to produce hydrogen and carbon dioxide (CO2). The second refers to capturing the CO2 generated during the SMR process on board ships. By capturing and storing the carbon emissions, the process significantly reduces its… More >

  • Open Access

    ARTICLE

    Far-Field Behavior of Supercritical CO2 Being Dispersed Due to Leakage from Pipelines

    Yanbo Shao1, Xuewen Cao1,*, Wei You1, Shan Zhao1, Zilong Nan2, Jiang Bian1,3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.12, pp. 2867-2885, 2024, DOI:10.32604/fdmp.2024.053774 - 23 December 2024

    Abstract Transporting massive quantities of carbon dioxide through a pipeline in its supercritical state is extremely convenient. Because of the unique properties of supercritical carbon dioxide, however, leakage occurring in such conditions can be extremely intricate, resulting in the dispersion area following leakage being influenced by numerous factors. In this study, this problem is addressed in the frame of the so-called Unified Dispersion Model (UDM), and various influential parameters are considered, namely, leakage pressure, leakage temperature, leakage aperture, leakage angle, atmospheric stability, wind speed, and surface roughness. The results show that the supercritical carbon dioxide dispersion More >

  • Open Access

    ARTICLE

    Comparison and Analysis of Heat Transfer and Inflow Rate for Supercritical Carbon Dioxide Based on Different Tubes

    Huda Adel Hassan Ali, Ameer Abed Jaddoa*, Jafaar Mohamme Daif

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 443-465, 2023, DOI:10.32604/fhmt.2023.042288 - 30 November 2023

    Abstract This paper is twofold. First, the effect of non-linear thermophysical property variation was presented using supercritical carbon dioxide (SCO2) around the thermodynamic pivotal point. The second part exhibits an experimental examination of the heat transfer (HT) behaviour of SCO2 in a helical tube with a hydraulic diameter of 2 mm at different mass fluxes (MF), heat fluxes (HF), and pressures (P). The experiments were carried out based on various pressures, mass fluxes, and heat fluxes for both scenarios. CO2 was cooled in a 2 mm diameter serpentine tube made of copper material. The experimental results showed that More > Graphic Abstract

    Comparison and Analysis of Heat Transfer and Inflow Rate for Supercritical Carbon Dioxide Based on Different Tubes

  • Open Access

    ARTICLE

    Numerical-Experimental Analysis of the Coal Fracture Formation Mechanism Induced by Liquid CO2 Explosion

    Yun Lei1,2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.12, pp. 3021-3032, 2023, DOI:10.32604/fdmp.2023.029570 - 27 October 2023

    Abstract The highly inefficient simultaneous extraction of coal and gas from low-permeability and high-gas coal seams in deep mines is a major problem often restricting the sustainable development of coal industry. A possible way to solve this problem under deep and complex geological conditions is represented by the technology based on the phase-change induced explosion of liquid carbon dioxide. In this work, the mechanism of formation of the coal mass fracture circle resulting from the gas cracking process is theoretically analyzed. Numerical simulations show that a blasting crushing zone with a radius of 1.0 m is More >

  • Open Access

    ARTICLE

    Optimisation Strategy of Carbon Dioxide Methanation Technology Based on Microbial Electrolysis Cells

    Qifen Li, Xiaoxiao Yan*, Yongwen Yang, Liting Zhang, Yuanbo Hou

    Journal of Renewable Materials, Vol.11, No.7, pp. 3177-3191, 2023, DOI:10.32604/jrm.2023.027749 - 05 June 2023

    Abstract Microbial Electrolytic Cell (MEC) is an electrochemical reaction device that uses electrical energy as an energy input and microorganisms as catalysts to produce fuels and chemicals. The regenerative electrochemical system is a MEC improvement system for methane gas produced by biological carbon sequestration technology using renewable energy sources to provide a voltage environment. In response to the influence of fluctuating disturbances of renewable electricity and the long system start-up time, this paper analyzes the characteristics of two strategies, regulating voltage parameter changes and activated sludge pretreatment, on the methane production efficiency of the renewable gas… More >

Displaying 1-10 on page 1 of 29. Per Page