Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Fractional Order Modeling of Predicting COVID-19 with Isolation and Vaccination Strategies in Morocco

    Lakhlifa Sadek1, Otmane Sadek1, Hamad Talibi Alaoui2, Mohammed S. Abdo3, Kamal Shah4,5, Thabet Abdeljawad4,6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.2, pp. 1931-1950, 2023, DOI:10.32604/cmes.2023.025033 - 06 February 2023

    Abstract In this work, we present a model that uses the fractional order Caputo derivative for the novel Coronavirus disease 2019 (COVID-19) with different hospitalization strategies for severe and mild cases and incorporate an awareness program. We generalize the SEIR model of the spread of COVID-19 with a private focus on the transmissibility of people who are aware of the disease and follow preventative health measures and people who are ignorant of the disease and do not follow preventive health measures. Moreover, individuals with severe, mild symptoms and asymptomatically infected are also considered. The basic reproduction… More >

  • Open Access

    ARTICLE

    The Efficient Finite Element Methods for Time-Fractional Oldroyd-B Fluid Model Involving Two Caputo Derivatives

    An Chen*

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.1, pp. 173-195, 2020, DOI:10.32604/cmes.2020.011871 - 18 September 2020

    Abstract In this paper, we consider the numerical schemes for a timefractional Oldroyd-B fluid model involving the Caputo derivative. We propose two efficient finite element methods by applying the convolution quadrature in time generated by the backward Euler and the second-order backward difference methods. Error estimates in terms of data regularity are established for both the semidiscrete and fully discrete schemes. Numerical examples for two-dimensional problems further confirm the robustness of the schemes with first- and second-order accurate in time. More >

  • Open Access

    ARTICLE

    Fractional Analysis of Viscous Fluid Flow with Heat and Mass Transfer Over a Flexible Rotating Disk

    Muhammad Shuaib1, Muhammad Bilal1, Muhammad Altaf Khan2, *, Sharaf J. Malebary3

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.1, pp. 377-400, 2020, DOI:10.32604/cmes.2020.08076 - 01 April 2020

    Abstract An unsteady viscous fluid flow with Dufour and Soret effect, which results in heat and mass transfer due to upward and downward motion of flexible rotating disk, has been studied. The upward or downward motion of non rotating disk results in two dimensional flow, while the vertical action and rotation of the disk results in three dimensional flow. By using an appropriate transformation the governing equations are transformed into the system of ordinary differential equations. The system of ordinary differential equations is further converted into first order differential equation by selecting suitable variables. Then, we More >

Displaying 1-10 on page 1 of 3. Per Page