Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    L-Moments Based Calibrated Variance Estimators Using Double Stratified Sampling

    Usman Shahzad1,2,*, Ishfaq Ahmad1, Ibrahim Mufrah Almanjahie3,4, Nadia H.Al –Noor5

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 3411-3430, 2021, DOI:10.32604/cmc.2021.017046 - 06 May 2021

    Abstract Variance is one of the most vital measures of dispersion widely employed in practical aspects. A commonly used approach for variance estimation is the traditional method of moments that is strongly influenced by the presence of extreme values, and thus its results cannot be relied on. Finding momentum from Koyuncu’s recent work, the present paper focuses first on proposing two classes of variance estimators based on linear moments (L-moments), and then employing them with auxiliary data under double stratified sampling to introduce a new class of calibration variance estimators using important properties of L-moments (L-location, More >

  • Open Access

    ARTICLE

    A New Class of L-Moments Based Calibration Variance Estimators

    Usman Shahzad1,2,*, Ishfaq Ahmad1, Ibrahim Mufrah Almanjahie3,4, Nadia H. Al Noor5, Muhammad Hanif2

    CMC-Computers, Materials & Continua, Vol.66, No.3, pp. 3013-3028, 2021, DOI:10.32604/cmc.2021.014101 - 28 December 2020

    Abstract Variance is one of the most important measures of descriptive statistics and commonly used for statistical analysis. The traditional second-order central moment based variance estimation is a widely utilized methodology. However, traditional variance estimator is highly affected in the presence of extreme values. So this paper initially, proposes two classes of calibration estimators based on an adaptation of the estimators recently proposed by Koyuncu and then presents a new class of L-Moments based calibration variance estimators utilizing L-Moments characteristics (L-location, L-scale, L-CV) and auxiliary information. It is demonstrated that the proposed L-Moments based calibration variance… More >

  • Open Access

    ARTICLE

    An Auto-Calibration Approach to Robust and Secure Usage of Accelerometers for Human Motion Analysis in FES Therapies

    Mingxu Sun1,#,*, Yinghang Jiang2,3,#, Qi Liu3,4,*, Xiaodong Liu4

    CMC-Computers, Materials & Continua, Vol.60, No.1, pp. 67-83, 2019, DOI:10.32604/cmc.2019.06079

    Abstract A Functional Electrical stimulation (FES) therapy is a common rehabilitation intervention after stroke, and finite state machine (FSM) has proven to be an effective and intuitive FES control method. The FSM uses the data information generated by the accelerometer to robustly trigger state transitions. In the medical field, it is necessary to obtain highly safe and accurate acceleration data. In order to ensure the accuracy of the acceleration sensor data without affecting the accuracy of the motion analysis, we need to perform acceleration big data calibration. In this context, we propose a method for robustly More >

Displaying 1-10 on page 1 of 3. Per Page