Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Observer-Based Control for a Cable-Driven Aerial Manipulator under Lumped Disturbances

    Li Ding, Yong Yao*, Rui Ma

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.2, pp. 1539-1558, 2023, DOI:10.32604/cmes.2022.023003 - 27 October 2022

    Abstract With the increasing demand for interactive aerial operations, the application of aerial manipulators is becoming more promising. However, there are a few critical problems on how to improve the energetic efficiency and pose control of the aerial manipulator for practical application. In this paper, a novel cable-driven aerial manipulator used for remote water sampling is proposed and then its rigid-flexible coupling dynamics model is constructed which takes joint flexibility into account. To achieve high precision joint position tracking under lumped disturbances, a newly controller, which consists of three parts: linear extended state observer, adaptive super-twisting More >

  • Open Access

    ARTICLE

    Optimal Joint Space Control of a Cable-Driven Aerial Manipulator

    Li Ding1,*, Rui Ma1, Zhengtian Wu2, Rongzhi Qi1, Wenrui Ruan1

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.1, pp. 441-464, 2023, DOI:10.32604/cmes.2022.022642 - 29 September 2022

    Abstract This article proposes a novel method for maintaining the trajectory of an aerial manipulator by utilizing a fast nonsingular terminal sliding mode (FNTSM) manifold and a linear extended state observer (LESO). The developed control method applies an FNTSM to ensure the tracking performance’s control accuracy, and an LESO to estimate the system’s unmodeled dynamics and external disturbances. Additionally, an improved salp swarm algorithm (ISSA) is employed to parameter tune the suggested controller by integrating the salp swarm technique with a cloud model. This approach also uses a model-free scheme to reduce the complexity of controller More >

  • Open Access

    ARTICLE

    Underconstrained Cable-Driven Parallel Suspension System of Virtual Flight Test Model in Wind Tunnel

    Huisong Wu, Kaichun Zeng, Li Yu, Yan Li, Xiping Kou*

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.1, pp. 395-416, 2023, DOI:10.32604/cmes.2022.021650 - 29 September 2022

    Abstract An underconstrained cable-driven parallel robot (CDPR) suspension system was designed for a virtual flight testing (VFT) model. This mechanism includes two identical upper and lower kinematic chains, each of which comprises a cylindrical pair, rotating pair, and cable parallelogram. The model is pulled via two cables at the top and bottom and fixed by a yaw turntable, which can realize free coupling and decoupling with three rotational degrees of freedom of the model. First, the underconstrained CDPR suspension system of the VFT model was designed according to the mechanics theory, the degrees of freedom were… More >

Displaying 1-10 on page 1 of 3. Per Page