Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Computational Investigation of Brownian Motion and Thermophoresis Effect on Blood-Based Casson Nanofluid on a Non-linearly Stretching Sheet with Ohmic and Viscous Dissipation Effects

    Haris Alam Zuberi1, Madan Lal1, Shivangi Verma1, Nurul Amira Zainal2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1137-1163, 2024, DOI:10.32604/cmes.2024.055493 - 27 September 2024

    Abstract Motivated by the widespread applications of nanofluids, a nanofluid model is proposed which focuses on uniform magnetohydrodynamic (MHD) boundary layer flow over a non-linear stretching sheet, incorporating the Casson model for blood-based nanofluid while accounting for viscous and Ohmic dissipation effects under the cases of Constant Surface Temperature (CST) and Prescribed Surface Temperature (PST). The study employs a two-phase model for the nanofluid, coupled with thermophoresis and Brownian motion, to analyze the effects of key fluid parameters such as thermophoresis, Brownian motion, slip velocity, Schmidt number, Eckert number, magnetic parameter, and non-linear stretching parameter on… More > Graphic Abstract

    Computational Investigation of Brownian Motion and Thermophoresis Effect on Blood-Based Casson Nanofluid on a Non-linearly Stretching Sheet with Ohmic and Viscous Dissipation Effects

  • Open Access

    ARTICLE

    Numerical Analysis of the Magnetic Dipole Effect on a Radiative Ferromagnetic Liquid Flowing over a Porous Stretched Sheet

    G. Dharmaiah1, F. Mebarek-Oudina2,*, K. S. Balamurugan3, N. Vedavathi4

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.2, pp. 293-310, 2024, DOI:10.32604/fdmp.2023.030325 - 14 December 2023

    Abstract The effects of a magnetic dipole on a nonlinear thermally radiative ferromagnetic liquid flowing over a stretched surface in the presence of Brownian motion and thermophoresis are investigated. By means of a similarity transformation, ordinary differential equations are derived and solved afterwards using a numerical (the BVP4C) method. The impact of various parameters, namely the velocity, temperature, concentration, is presented graphically. It is shown that the nanoparticles properties, in conjunction with the magnetic dipole effect, can increase the thermal conductivity of the engineered nanofluid and, consequently, the heat transfer. Comparison with earlier studies indicates high More > Graphic Abstract

    Numerical Analysis of the Magnetic Dipole Effect on a Radiative Ferromagnetic Liquid Flowing over a Porous Stretched Sheet

  • Open Access

    ARTICLE

    MHD (SWCNTS + MWCNTS)/H2O-Based Williamson Hybrid Nanouids Flow Past Exponential Shrinking Sheet in Porous Medium

    Hamzeh Taha Alkasasbeh1,*, Muhammad Khairul Anuar Mohamed2

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 265-279, 2023, DOI:10.32604/fhmt.2023.041539 - 30 November 2023

    Abstract The present study numerically investigates the flow and heat transfer of porous Williamson hybrid nanofluid on an exponentially shrinking sheet with magnetohydrodynamic (MHD) effects. The nonlinear partial differential equations which governed the model are first reduced to a set of ordinary differential equations by using the similarity transformation. Next, the BVP4C solver is applied to solve the equations by considering the pertinent fluid parameters such as the permeability parameter, the magnetic parameter, the Williamson parameter, the nanoparticle volume fractions and the wall mass transfer parameter. The single (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) nanoparticles are More >

  • Open Access

    ARTICLE

    Mathematical Study of MHD Micropolar Fluid Flow with Radiation and Dissipative Impacts over a Permeable Stretching Sheet: Slip Effects Phenomena

    Pudhari Srilatha1, Ahmed M. Hassan2, B. Shankar Goud3,*, E. Ranjit Kumar4

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 539-562, 2023, DOI:10.32604/fhmt.2023.043023 - 30 November 2023

    Abstract The purpose of this research is to investigate the influence that slip boundary conditions have on the rate of heat and mass transfer by examining the behavior of micropolar MHD flow across a porous stretching sheet. In addition to this, the impacts of thermal radiation and viscous dissipation are taken into account. With the use of various computing strategies, numerical results have been produced. Similarity transformation was utilized in order to convert the partial differential equations (PDEs) that regulated energy, rotational momentum, concentration, and momentum into ordinary differential equations (ODEs). As compared to earlier published… More > Graphic Abstract

    Mathematical Study of MHD Micropolar Fluid Flow with Radiation and Dissipative Impacts over a Permeable Stretching Sheet: Slip Effects Phenomena

  • Open Access

    ARTICLE

    Numerical Simulation of Reiner–Rivlin Nanofluid Flow under the Influence of Thermal Radiation and Activation Energy over a Rotating Disk

    Arfan Shahzad1,2, Muhammad Imran1,*, Muhammad Nawaz Naeem1, Mohsan Raza1

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.3, pp. 1669-1692, 2022, DOI:10.32604/cmes.2022.017914 - 19 April 2022

    Abstract In current study, the numerical computations of Reiner–Rivlin nanofluid flow through a rotational disk under the influence of thermal radiation and Arrhenius activation energy is considered. For innovative physical situations, the motile microorganisms are incorporated too. The multiple slip effects are considered in the boundary conditions. The bioconvection of motile microorganism is utilized alongside nanofluids to provide stability to enhanced thermal transportation. The Bioconvection pattern in various nanoparticles accredits novel applications of biotechnology like the synthesis of biological polymers, biosensors, fuel cells, petroleum engineering, and the natural environment. By deploying some suitable similarity transformation functions,… More >

Displaying 1-10 on page 1 of 5. Per Page